What is “discrete structures”?

- Often called “discrete math”
- The mathematical tools that underlie computer science
- Discrete Math : Computer Science :: Calculus : Physics
What is “discrete structures”?

- Formal logic
- Basic probability and statistics
- Sets, functions, relations
- Automata
- Number theory
- Graphs
What is “discrete structures”?

- Formal logic
 - Software construction
 - Algorithm design and analysis
 - Security
- Basic probability and statistics
- Sets, functions, relations
- Automata
- Number theory
- Graphs
What is “discrete structures”?

- Formal logic
- Basic probability and statistics
 - “Big data”
 - Machine learning
 - Information theory
- Sets, functions, relations
- Automata
- Number theory
- Graphs
What is “discrete structures”?

- Formal logic
- Basic probability and statistics
- Sets, functions, relations
 - Databases
 - Functional programming
- Automata
- Number theory
- Graphs
What is “discrete structures”?

- Formal logic
- Basic probability and statistics
- Sets, functions, relations
- Automata
 - Compilers
 - Network protocols
 - Games and animations
 - Nature of the universe
- Number theory
- Graphs
What is “discrete structures”?

- Formal logic
- Basic probability and statistics
- Sets, functions, relations
- Automata
- Number theory
 - Cryptography
 - Geometry
- Graphs
What is “discrete structures”?

- Formal logic
- Basic probability and statistics
- Sets, functions, relations
- Automata
- Number theory
- Graphs
 - Social networks
 - AI, planning
 - Networking
What is “discrete structures”?

- Formal logic
- Basic probability and statistics
- Sets, functions, relations
- Automata
- Number theory
- Graphs

Important foundations for computer science
What is this course really about?

Math = Computation?
What is this course really about?

Math = Computation?

Formal, step by step reasoning (proofs)
 ▶ Distinguishing good arguments from bad
 ▶ Clearly stating definitions
 ▶ ... and sticking to them!
 ▶ Tools for avoiding being wrong
What is this course really about?

Math = Computation?

Formal, step by step reasoning (proofs)

▶ Distinguishing good arguments from bad
▶ Clearly stating definitions
 ▶ ... and sticking to them!
▶ Tools for avoiding being wrong

Reasoning abstractly

▶ Ignore the details of the objects you’re considering; work only with their properties
 ▶ Example: I can add two integers, two real numbers, two strings, two paths on the surface of a donut.
 ▶ Example: I can find shortest paths in a social network, a physical network, the flow of data in a program
What is this course really about?

Math = Computation?

Formal, step by step reasoning (proofs)

- Distinguishing good arguments from bad
- Clearly stating definitions
 - ... and sticking to them!
- **Tools for avoiding being wrong**

Reasoning abstractly

- Ignore the details of the objects you’re considering; work only with their properties
 - Example: I can add two integers, two real numbers, two strings, two paths on the surface of a donut.
 - Example: I can find shortest paths in a social network, a physical network, the flow of data in a program
- Avoids getting bogged down in details
- Lets you reuse work
Course logistics

- Lecture
 - Designed to be useful
 - Some from Prof. George, some from Prof. Chaudhuri
 - **Please no laptops.**
Course logistics

- Lecture
 - Designed to be useful
 - Some from Prof. George, some from Prof. Chaudhuri
 - Please no laptops.

- Weekly problem sets (≈40%)
 - Released Monday, due Monday at noon
 - Judged on **clarity** and **correctness**
 - Usual rubric:
 - 3: correct and clearly explained
 - 2: important error
 - 1: misunderstanding of key concept
 - 0: blank
Course logistics

- **Lecture**
 - Designed to be useful
 - Some from Prof. George, some from Prof. Chaudhuri
 - **Please no laptops.**

- **Weekly problem sets (≈40%)**
 - Released Monday, due Monday at noon
 - Judged on **clarity** and **correctness**
 - Usual rubric:
 - 3: correct and clearly explained
 - 2: important error
 - 1: misunderstanding of key concept
 - 0: blank

- **Exams**
 - Two (in class) prelims (≈15% each), on final (≈25%)
Course logistics

- No textbook
 - But see Rosen or Pass and Tseng (links on website)
 - Lecture notes and additional readings will be posted

- Website, CMS, Piazza
 - http://www.cs.cornell.edu/Courses/cs2800
 - Please use Piazza for all communication with course staff
 - CMS not populated yet

- Lots of office hours!
 - Starting next week.
 - Schedule posted on Piazza

- Study sessions highly encouraged
Collaboration

Expectations:
▶ You are encouraged to work together, but
▶ ... All submitted work **must** be your own

Encouraged:
▶ “Let’s work together on problem 3”

Disallowed:
▶ “What did you write for problem 3?”

Rule of thumb:
▶ You should be able to reproduce the paper you turned in without consulting your notes