1. Suppose we wish to transmit the message “cs2800 rocks” using RSA. Suppose the public key has \(m = pq = 3403 \) and the exponent \(k = 17 \).

Note: for this problem, I used a spreadsheet to do the calculations. If you use calculators or spreadsheets to manipulate very large numbers, you can cause overflow, so make sure you reduce mod \(m \) as necessary to keep the numbers small. To compute \(a^k \) for large \(k \), it helps to write \(k \) in binary, and then use repeated squaring to find \(a \) to a power-of-two power. For example, to compute \(a^{52} \), I write \(52 = 32 + 16 + 4 \), so \(a^{52} = a^{32} \cdot a^{16} \cdot a^4 \).

(a) Use the mapping

| a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z |
| 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |

convert the message into a string of digits, and break the digits up into groups of threes.

(b) By separately encrypting each block of 3 digits, produce the RSA cyphertext. Add leading zeros to each encrypted block so that each block of cyphertext is 4 digits long.

(c) You have managed to intercept the private key: \(p = 41 \), \(q = 83 \). Use these factors to compute \(\phi(m) \) and \(k^{-1} \). Use the algorithm you derived in question 2 of homework 8 to compute \(k^{-1} \mod \phi(m) \).

(d) Using these values, decrypt the message “0948 3332 1850 2898 2002 2692 0377 1398”.

1/1