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1 Functions

Definition 1.1. Formally, a function f : A → B is a subset f of A×B with
the property that for every a ∈ A, there is a unique element b ∈ B such that
(a, b) ∈ f . The set A is called the domain of f and the set B is the codomain
of f .

While the above definition provides a definition of a function purely in
terms of set theory, it is usually not a useful picture to work with. However
it does emphasize the important point that the domain and codomain of a
function are an intrinsic part of any function f .

Less formally, we usually think of a function f : A → B as a rule of
assignment which assigns a unique output f(a) ∈ B for every input a ∈ A.
The graph of f , denoted Graph(f) = {(a, f(a))|a ∈ A} ⊂ A × B then
recovers the more formal set theoretic definition of the function.

Definition 1.2. Let f : A → B be a function.
Given S ⊂ A we define f(S) = {f(s)|s ∈ S}. Note that f(S) ⊆ B. f(S)

is called the image of the set S under f .
f(A) is called the image of f , and is denoted Im(f).
Given T ⊂ B we define f−1(T ) = {a ∈ A|f(a) ∈ T}. Note that f−1(T ) ⊆

A. f−1(T ) is called the preimage of the set T under f .

Fix a function f : A → B, then it is easy to see that for all S ⊂ A,
S ⊂ f−1(f(S)) and for all T ⊆ B, we have f(f−1(T )) ⊆ T . The next
example shows that these inclusions do not have to be equalities in general.
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Example 1.3. Define f : Z → Z via f(n) = n2 for all n ∈ Z. Then
Im(f) = {0, 1, 4, 9, 16, . . .}, f({2}) = {4} and f−1({0, 1, 2}) = {0,−1, 1}. It
follows that f(f−1({0, 1, 2})) = {0, 1} and f−1(f({2})) = {−2, 2}.

The following are among the most important concepts involving functions,
we shall see why shortly.

Definition 1.4. Given a function f : A → B we say that:
(a) f is surjective (equivalently “onto”) if Im(f) = B.
(b) f is injective (equivalently “one-to-one”) if for all a, a′ ∈ A,
(f(a) = f(a′)) =⇒ (a = a′).
Equivalently, f is injective if for all a, a′ ∈ A, (a 6= a′) =⇒ (f(a) 6= f(a′)).
Thus an injective function is one that takes distinct inputs to distinct outputs.
(c) f is bijective (equivalently a “one-to-one correspondence”) if it has both
properties (a) and (b) above.

These properties are important as they allow f to be inverted in a certain
sense to be made clear soon.

First let us recall the definition of the composition of functions:

Definition 1.5. If we have two functions f : A → B and g : B → C then
we may form the composition g ◦ f : A → C defined as (g ◦ f)(a) = g(f(a))
for all a ∈ A.

It is fundamental that the composition of functions is associative:

Proposition 1.6 (Associativity of composition). Let f : A → B, g :
B → C, h : C → D be functions. Then (h ◦ g) ◦ f = h ◦ (g ◦ f).

Proof. The two expressions give functions from A to C. To show they are
equal we only need to show they give the same output for every input a ∈ A.
Computing we find:

((h ◦ g) ◦ f)(a) = (h ◦ g)(f(a)) = h(g(f(a))).

(h ◦ (g ◦ f))(a) = h((g ◦ f)(a)) = h(g(f(a))).

Since the two expressions agree, this completes the proof.

Definition 1.7. For any set S, the identity function on S, denoted by 1S :
S → S is the function defined by 1S(s) = s for all s ∈ S.

It is easy to check that if we have a function f : A → B then

f ◦ 1A = f = 1B ◦ f.
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Now we are ready to introduce the concept of inverses:

Definition 1.8. Suppose we have a pair of functions f : A → B and g :
B → A such that g ◦ f = 1A. Then we say that f is a right inverse for g and
equivalently that g is a left inverse for f .

The following is fundamental:

Theorem 1.9. If f : A → B and g : B → A are two functions such that
g ◦ f = 1A then f is injective and g is surjective. Hence a function with
a left inverse must be injective and a function with a right inverse must be
surjective.

Proof. g ◦ f = 1A is equivalent to g(f(a)) = a for all a ∈ A.
Showing f is injective: Suppose a, a′ ∈ A and f(a) = f(a′) ∈ B. Then

we may apply g to both sides of this last equation and use that g ◦ f = 1A

to conclude that a = a′. Thus f is injective.
Showing g is surjective: Let a ∈ A. Then f(a) ∈ B and g(f(a)) = a.

Thus a ∈ g(B) = Im(g) for all a ∈ A showing A = Im(g) so g is surjective.

The following example shows that left (right) inverses need not be unique:

Example 1.10. Let A = {1, 2} and B = {a, b, c}. Define f1, f2 : A → B

by f1(1) = a, f1(2) = c, f2(1) = b, f2(2) = c. Define g1, g2 : B → A by
g1(a) = g1(b) = 1, g1(c) = 2 and g2(a) = 1, g2(b) = g2(c) = 2. Then it is an
easy exercise to show that g1 ◦ f1 = 1A = g1 ◦ f2 so that g1 has two distinct
right inverses f1 and f2. Furthermore since g1 is not injective, it has no left
inverse.

Similarly one can compute, g2 ◦ f1 = 1A so that f1 has two distinct left
inverses g1 and g2. Furthermore since f1 is not surjective, it has no right
inverse.

From this example we see that even when they exist, one-sided inverses
need not be unique.

However we will now see that when a function has both a left inverse and
a right inverse, then all inverses for the function must agree:

Lemma 1.11. Let f : A → B be a function with a left inverse h : B → A

and a right inverse g : B → A. Then h = g and in fact any other left or
right inverse for f also equals h.
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Proof. We have that h ◦ f = 1A and f ◦ g = 1B by assumption. Using
associativity of function composition we have:

h = h ◦ 1B = h ◦ (f ◦ g) = (h ◦ f) ◦ g = 1A ◦ g = g.

So h equals g. Since this argument holds for any right inverse g of f , they
all must equal h. Since this argument holds for any left inverse h of f , they
all must equal g and hence h. So all inverses for f are equal.

We finish this section with complete characterizations of when a function
has a left, right or two-sided inverse.

Proposition 1.12. A function f : A → B has a left inverse if and only if it
is injective.

Proof. =⇒ : Follows from Theorem 1.9. ⇐=: If f : A → B is injective then
we can construct a left inverse g : B → A as follows. Fix some a0 ∈ A and
define

g(b) =

{

a if b ∈ Im(f) and f(a) = b

a0 otherwise

Note this defines a function only because there is at most one a with f(a) = b.
It is an easy computation now to show g ◦ f = 1A and so g is a left inverse
for f .

Proposition 1.13. A function f : A → B has a right inverse if and only if
it is surjective.

Proof. =⇒ : Follows from Theorem 1.9. ⇐=: Suppose f : A → B is
surjective. Then for each b ∈ B, f−1({b}) is a nonempty subset of A. Thus
by the Axiom of Choice we may construct a “choice” function g : B → A

such that g(b) is a choice of element from the nonempty set f−1({b}) for all
b ∈ B. It is easy now to compute that f ◦ g = 1B and so g is a right inverse
for f .

Proposition 1.14. A function f : A → B has a two-sided inverse if and
only if it is bijective. In this case, the two-sided inverse will be unique and is
usually denoted by f−1 : B → A.
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Proof. First note that a two sided inverse is a function g : B → A such
that f ◦ g = 1B and g ◦ f = 1A. =⇒ : Theorem 1.9 shows that if f has
a two-sided inverse, it is both surjective and injective and hence bijective.
⇐=: Now suppose f is bijective. From the previous two propositions, we
may conclude that f has a left inverse and a right inverse. By Lemma 1.11
we may conclude that these two inverses agree and are a two-sided inverse
for f which is unique. Alternatively we may construct the two-sided inverse
directly via f−1(b) = a whenever f(a) = b.
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