# MATH 436 Notes: Functions and Inverses. 

Jonathan Pakianathan

September 12, 2003

## 1 Functions

Definition 1.1. Formally, a function $f: A \rightarrow B$ is a subset $f$ of $A \times B$ with the property that for every $a \in A$, there is a unique element $b \in B$ such that $(a, b) \in f$. The set $A$ is called the domain of $f$ and the set $B$ is the codomain of $f$.

While the above definition provides a definition of a function purely in terms of set theory, it is usually not a useful picture to work with. However it does emphasize the important point that the domain and codomain of a function are an intrinsic part of any function $f$.

Less formally, we usually think of a function $f: A \rightarrow B$ as a rule of assignment which assigns a unique output $f(a) \in B$ for every input $a \in A$. The graph of $f$, denoted $\operatorname{Graph}(f)=\{(a, f(a)) \mid a \in A\} \subset A \times B$ then recovers the more formal set theoretic definition of the function.

Definition 1.2. Let $f: A \rightarrow B$ be a function.
Given $S \subset A$ we define $f(S)=\{f(s) \mid s \in S\}$. Note that $f(S) \subseteq B . f(S)$ is called the image of the set $S$ under $f$.
$f(A)$ is called the image of $f$, and is denoted $\operatorname{Im}(f)$.
Given $T \subset B$ we define $f^{-1}(T)=\{a \in A \mid f(a) \in T\}$. Note that $f^{-1}(T) \subseteq$ A. $f^{-1}(T)$ is called the preimage of the set $T$ under $f$.

Fix a function $f: A \rightarrow B$, then it is easy to see that for all $S \subset A$, $S \subset f^{-1}(f(S))$ and for all $T \subseteq B$, we have $f\left(f^{-1}(T)\right) \subseteq T$. The next example shows that these inclusions do not have to be equalities in general.

Example 1.3. Define $f: \mathbb{Z} \rightarrow \mathbb{Z}$ via $f(n)=n^{2}$ for all $n \in \mathbb{Z}$. Then $\operatorname{Im}(f)=\{0,1,4,9,16, \ldots\}, f(\{2\})=\{4\}$ and $f^{-1}(\{0,1,2\})=\{0,-1,1\}$. It follows that $f\left(f^{-1}(\{0,1,2\})\right)=\{0,1\}$ and $f^{-1}(f(\{2\}))=\{-2,2\}$.

The following are among the most important concepts involving functions, we shall see why shortly.

Definition 1.4. Given a function $f: A \rightarrow B$ we say that:
(a) $f$ is surjective (equivalently "onto") if $\operatorname{Im}(f)=B$.
(b) $f$ is injective (equivalently "one-to-one") if for all $a, a^{\prime} \in A$, $\left(f(a)=f\left(a^{\prime}\right)\right) \Longrightarrow\left(a=a^{\prime}\right)$.
Equivalently, $f$ is injective if for all $a, a^{\prime} \in A,\left(a \neq a^{\prime}\right) \Longrightarrow\left(f(a) \neq f\left(a^{\prime}\right)\right)$. Thus an injective function is one that takes distinct inputs to distinct outputs. (c) $f$ is bijective (equivalently a "one-to-one correspondence") if it has both properties (a) and (b) above.

These properties are important as they allow $f$ to be inverted in a certain sense to be made clear soon.

First let us recall the definition of the composition of functions:
Definition 1.5. If we have two functions $f: A \rightarrow B$ and $g: B \rightarrow C$ then we may form the composition $g \circ f: A \rightarrow C$ defined as $(g \circ f)(a)=g(f(a))$ for all $a \in A$.

It is fundamental that the composition of functions is associative:
Proposition 1.6 (Associativity of composition). Let $f: A \rightarrow B, g$ : $B \rightarrow C, h: C \rightarrow D$ be functions. Then $(h \circ g) \circ f=h \circ(g \circ f)$.

Proof. The two expressions give functions from $A$ to $C$. To show they are equal we only need to show they give the same output for every input $a \in A$. Computing we find:

$$
\begin{aligned}
& ((h \circ g) \circ f)(a)=(h \circ g)(f(a))=h(g(f(a))) . \\
& (h \circ(g \circ f))(a)=h((g \circ f)(a))=h(g(f(a))) .
\end{aligned}
$$

Since the two expressions agree, this completes the proof.
Definition 1.7. For any set $S$, the identity function on $S$, denoted by $1_{S}$ : $S \rightarrow S$ is the function defined by $1_{S}(s)=s$ for all $s \in S$.

It is easy to check that if we have a function $f: A \rightarrow B$ then

$$
f \circ 1_{A}=f=1_{B} \circ f
$$

Now we are ready to introduce the concept of inverses:
Definition 1.8. Suppose we have a pair of functions $f: A \rightarrow B$ and $g$ : $B \rightarrow A$ such that $g \circ f=1_{A}$. Then we say that $f$ is a right inverse for $g$ and equivalently that $g$ is a left inverse for $f$.

The following is fundamental:
Theorem 1.9. If $f: A \rightarrow B$ and $g: B \rightarrow A$ are two functions such that $g \circ f=1_{A}$ then $f$ is injective and $g$ is surjective. Hence a function with a left inverse must be injective and a function with a right inverse must be surjective.

Proof. $g \circ f=1_{A}$ is equivalent to $g(f(a))=a$ for all $a \in A$.
Showing $f$ is injective: Suppose $a, a^{\prime} \in A$ and $f(a)=f\left(a^{\prime}\right) \in B$. Then we may apply $g$ to both sides of this last equation and use that $g \circ f=1_{A}$ to conclude that $a=a^{\prime}$. Thus $f$ is injective.

Showing $g$ is surjective: Let $a \in A$. Then $f(a) \in B$ and $g(f(a))=a$. Thus $a \in g(B)=\operatorname{Im}(g)$ for all $a \in A$ showing $A=\operatorname{Im}(g)$ so $g$ is surjective.

The following example shows that left (right) inverses need not be unique:
Example 1.10. Let $A=\{1,2\}$ and $B=\{a, b, c\}$. Define $f_{1}, f_{2}: A \rightarrow B$ by $f_{1}(1)=a, f_{1}(2)=c, f_{2}(1)=b, f_{2}(2)=c$. Define $g_{1}, g_{2}: B \rightarrow A$ by $g_{1}(a)=g_{1}(b)=1, g_{1}(c)=2$ and $g_{2}(a)=1, g_{2}(b)=g_{2}(c)=2$. Then it is an easy exercise to show that $g_{1} \circ f_{1}=1_{A}=g_{1} \circ f_{2}$ so that $g_{1}$ has two distinct right inverses $f_{1}$ and $f_{2}$. Furthermore since $g_{1}$ is not injective, it has no left inverse.

Similarly one can compute, $g_{2} \circ f_{1}=1_{A}$ so that $f_{1}$ has two distinct left inverses $g_{1}$ and $g_{2}$. Furthermore since $f_{1}$ is not surjective, it has no right inverse.

From this example we see that even when they exist, one-sided inverses need not be unique.

However we will now see that when a function has both a left inverse and a right inverse, then all inverses for the function must agree:

Lemma 1.11. Let $f: A \rightarrow B$ be a function with a left inverse $h: B \rightarrow A$ and $a$ right inverse $g: B \rightarrow A$. Then $h=g$ and in fact any other left or right inverse for $f$ also equals $h$.

Proof. We have that $h \circ f=1_{A}$ and $f \circ g=1_{B}$ by assumption. Using associativity of function composition we have:

$$
h=h \circ 1_{B}=h \circ(f \circ g)=(h \circ f) \circ g=1_{A} \circ g=g .
$$

So $h$ equals $g$. Since this argument holds for any right inverse $g$ of $f$, they all must equal $h$. Since this argument holds for any left inverse $h$ of $f$, they all must equal $g$ and hence $h$. So all inverses for $f$ are equal.

We finish this section with complete characterizations of when a function has a left, right or two-sided inverse.

Proposition 1.12. A function $f: A \rightarrow B$ has a left inverse if and only if it is injective.

Proof. $\Longrightarrow$ : Follows from Theorem 1.9. $\Longleftarrow$ : If $f: A \rightarrow B$ is injective then we can construct a left inverse $g: B \rightarrow A$ as follows. Fix some $a_{0} \in A$ and define

$$
g(b)=\left\{\begin{array}{l}
a \text { if } b \in \operatorname{Im}(f) \text { and } f(a)=b \\
a_{0} \text { otherwise }
\end{array}\right.
$$

Note this defines a function only because there is at most one $a$ with $f(a)=b$. It is an easy computation now to show $g \circ f=1_{A}$ and so $g$ is a left inverse for $f$.

Proposition 1.13. A function $f: A \rightarrow B$ has a right inverse if and only if it is surjective.

Proof. $\Longrightarrow$ : Follows from Theorem 1.9. $\Longleftarrow$ : Suppose $f: A \rightarrow B$ is surjective. Then for each $b \in B, f^{-1}(\{b\})$ is a nonempty subset of $A$. Thus by the Axiom of Choice we may construct a "choice" function $g: B \rightarrow A$ such that $g(b)$ is a choice of element from the nonempty set $f^{-1}(\{b\})$ for all $b \in B$. It is easy now to compute that $f \circ g=1_{B}$ and so $g$ is a right inverse for $f$.

Proposition 1.14. A function $f: A \rightarrow B$ has a two-sided inverse if and only if it is bijective. In this case, the two-sided inverse will be unique and is usually denoted by $f^{-1}: B \rightarrow A$.

Proof. First note that a two sided inverse is a function $g: B \rightarrow A$ such that $f \circ g=1_{B}$ and $g \circ f=1_{A} . \Longrightarrow$ : Theorem 1.9 shows that if $f$ has a two-sided inverse, it is both surjective and injective and hence bijective. $\Longleftarrow$ : Now suppose $f$ is bijective. From the previous two propositions, we may conclude that $f$ has a left inverse and a right inverse. By Lemma 1.11 we may conclude that these two inverses agree and are a two-sided inverse for $f$ which is unique. Alternatively we may construct the two-sided inverse directly via $f^{-1}(b)=a$ whenever $f(a)=b$.

