Intro/recap:

I set up the totient function as follows: I said that we needed to find some number $\phi(m)$ such that $a^{\phi(m)} = 1 \mod m$. I defined $\phi(m)$ as the number of numbers of units in the set \mathbb{Z}_m, and reiterated that this was the number of numbers that are less than m and relatively prime to m.

What's left?
- We need to prove that $a^{\phi(m)} = 1$.
- We need to compute $\phi(m)$

Proving $a^{\phi(m)} = 1$ if a is a unit:

We're going to think about what happens when we multiply things by higher and higher powers of a. Here's the set of units, and here's a:

```
{ a a^2 ...
```

What happens when we multiply multiply a and a^2? We get another unit (what's its inverse)?

Multiply by a

```
```

``` / 
```

``` a a^2
```

Multiply by b

```
```

``` / 
```

``` a b a^2 ab
```

Multiply by a

```
```

``` / 
```

``` a b a^2 a^3 ab a(y-1)
```

And none of the a^ns are the same (otherwise y isn't the smallest!). We can also think about where the ba^ns go as we multiply by a:

```
```

``` / 
```

``` a a^y-1 -> b a^2 a^3 ab a(y-1)
```

None of the elements in this picture can be the same. The b's can be the same as each other (small proof on the side), and the b's can't be the same as the a's (small proof on the side).

This might not be all the units of course, but if there's some other c that we haven't drawn yet, it will be in its own cycle:

```
```

``` / 
```

``` a a^y-1 -> b a^2 a^3 ab -> a^2b a(y-1) c
```

And c's cycle can't overlap with the other two.

So we've partitioned the entire set of units into these cycles. Each cycle contains y elements, and everything is in one of the cycles. So y must divide the total number of elements. The total number of elements is $\phi(m)$. So y divides $\phi(m)$. So raising a to the $\phi(m)$ means going around the loop $\phi(m)/y$ times, which gets us back to a.

QED.

Computing $\phi(m)$:

We already saw that $\phi(p) = p-1$ if p is prime. We need to compute $\phi(pq)$ where p and q are distinct primes. We can do this by listing all the numbers and crossing off the non-units:

```
{ 0 1 2 3 ... (p-1)
 p p+1 p+2 p+3 ... 2p-1
 2p 2p+1 2p+2 2p+3 ... 3p-1 q rows
...
(q-1)p ...

```

Clearly the whole left hand column are not coprime with pq, and there are q of them. Everything else is coprime with p, so the only thing we have to worry about are the multiples of q. By the same picture, there are p multiples of q. The only overlap between the two is 0 (or pq if you prefer). So we have pq total elements, minus p multiples of q, minus q multiples of p, but plus one because we double counted zero.

\[pq - p - q + 1 = pq(p-1) \cdot (q-1) = (p-1)(q-1)\]

Summary of RSA:

The recipient publishes pq and p. The sender transmits $a^k \mod pq$. The recipient computes $\phi(pq)$, and $k^{-1} \mod \phi(pq)$ (using the homework). He then computes $(a^k)^{k^{-1}} = 1 + x\phi(pq)$. So $a^{(k^2-1)} = a^{(1 + x\phi(pq))} = a^a(x\phi(pq)) = a$.

\[\]