1 Addenda to last lecture

Pumping lemma In the statement of the pumping lemma, we can add the fact that $|uv| \leq m$ (where m is the number of states in the machine). This can be useful in proofs that use the pumping lemma; for example we could simplify the proof that $\{0^n1^n \mid n \in \mathbb{N}\}$ is not regular by using the fact that $|uv| \leq m$ in the string 0^m1^m; this forces v to only contain zeros.

The proof of the extended lemma is exactly the same as the proof of the lemma we did last time.

Halting problem Last time we gave a non-constructive proof that there are undecidable languages. One famous example of such a language is the “Halting Problem”, defined as follows (in the context of Java programs). The language L consists of all strings that, when interpreted as the source code of Java programs, halt.

It turns out this language cannot be decided by any Java program that always terminates.

2 Inductive definitions and structural induction

It is often useful to define a set using a set of rules for adding things to the set. For example, we can define the set Σ^* using the following rules:

1. $\epsilon \in \Sigma^*$ (ϵ is the empty string)
2. For all $x \in \Sigma^*$, and for all $a \in \Sigma$, xa is also in Σ^*.

We can then take Σ^* to be the smallest set that satisfies these rules. A set constructed this way is called an inductively defined set.

If a set S is inductively defined, we can define functions using the inductive rules. In the string example, every string is either ϵ or xa for some x and a; If I give you the definition of f for ϵ and also for xa (possibly in terms of $f(x)$)
then you can use that definition to evaluate \(f \) on any input. See the definition of \(\hat{\delta} \) below for a concrete example.

For another example, consider the length function \(\ell \) on strings. I will define \(\ell(\epsilon) = 0 \) and \(\ell(xa) = 1 + \ell(x) \). This function is well defined. For example I can evaluate it on the string 101 as follows:

\[
\ell(101) = 1 + \ell(10) = 1 + (1 + \ell(0)) = 1 + (1 + (1 + \ell(\epsilon))) = 3
\]

Finally, if we have an inductively defined set, we can use structural induction to prove facts about all elements in the set. Just as with induction over the natural numbers, we need to include a case for each possible element of the set; which means we need to include a case for each of the rules that can be used to construct an element. We could for example prove that all strings have non-negative length:

Claim: For all \(x \in \Sigma^* \), \(\ell(x) \geq 0 \).

Proof: There are two kinds of strings: \(\epsilon \) and \(xa \). By definition, \(\ell(\epsilon) = 0 \geq 0 \). We know \(\ell(xa) = 1 + \ell(x) \). Our inductive hypothesis says that \(\ell(x) \geq 0 \). Adding one to both sides, we see that \(\ell(xa) = 1 + \ell(x) \geq 1 \geq 0 \).

3 Formal definition of a language

We then introduced some formal notation for proving things about DFAs. We defined the extended transition function \(\hat{\delta} : Q \times \Sigma^* \rightarrow Q \). This function is extends the normal transition function \(\delta \) for a DFA to accept entire strings instead of single characters. It is defined as follows:

\[
\hat{\delta}(q, \epsilon) = q \\
\hat{\delta}(q, xa) = \delta(\hat{\delta}(q, x), a)
\]

Do not memorize this definition. You should get to a point where you can work it out from the high-level description of what it does.

Note that in the second line, one of the \(\delta \)'s has a hat and the other does not. These are both important; the first delta must not have a hat, because otherwise this is a circular definition (note that it wouldn’t depend at all on \(\hat{\delta} \)), and the second delta must have a hat because \(\delta \) cannot operate on entire strings.

Using this definition, we formalized the notion of a machine accepting a string \(x \): \(x \) is accepted if \(\hat{\delta}(q_0, x) \in F \). This gives us a definition for the language of a machine \(M = (Q, \Sigma, \delta, F, q_0) \):

\[
L(M) = \{ x \in \Sigma^* \mid \hat{\delta}(q_0, x) \in F \}
\]

This is just a formalization of the notion of acceptance we have been using.
4 Union construction

We also constructed a machine to recognize the union of two DFA-recognizable languages. For more detail, see constructions.pdf.