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Bayes' Theorem

● Given: prior probabilities of hypotheses, and the 
probability that each hypothesis produces the 
observed evidence

● Produces: probability of a particular hypothesis, 
given the observed evidence.

P(A∣B)=
P(B∣A)P(A)

P (B)



Estimating P(B)

● Total Probability Theorem: If A
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Recall: Medical Diagnosis

● Suppose:
– 1 in 1000 people carry a disease, for which there is a 

pretty reliable test
– Probability of a false negative (carrier tests negative) is 

1% (so probability of carrier testing positive is 99%)
– Probability of a false positive (non-carrier tests 

positive) is 5%
● A person just tested positive. What are the 

chances (s)he is a carrier of the disease?



A counter-intuitive result

● The reliable test gives a positive result, but the 
chance the patient has the disease is only about 
2%.

● Informally: the rarity of the disease outweighs the 
small chance of error.



Should we stop worrying?
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Should we stop worrying?

● No.
● The consequences of being wrong are pretty 

severe.
● How can we better interpret this result?
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Possibilities

● You live

● Improvement to your 
current state: +1

(if we agree living longer can 
enrich our life experience)

● You die
(let's assume the disease is 
always fatal)

● Improvement to your 
current state: -1000000

(Yes, I'm pulling these numbers out of a (non-
probabilistic) posterior, but they're illustrative)



Expectation

   P(Living | Positive) × Utility of living
+ P(Dying | Positive) × Utility of dying
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Expectation

   P(Living | Positive) × Utility of living
+ P(Dying | Positive) × Utility of dying

= 0.986 × 1 + 0.0194 × -1000000

≈ -19399

The exact value isn't meaningful in this example. 
Just note that despite a small probability of a bad 
outcome, the highly negative weighted average 
suggests we might have reason to be worried.
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● If the outcomes are not numbers (or more 
generally, not elements of a vector space) which 
can be meaningfully added/scaled, we can assign 
them numeric “utility” values u(x), and inspect the 
“expected utility” ∑

i
 P(x

i
) u(x

i
)

Expectation



Expected
weather

P(cloudy)

P(rainy) P(snow)

P(sunny)

Expected Weather in Ithaca



P(cloudy)

P(rainy) P(snow)

P(sunny)

Expected Weather in SoCal

Expected
weather



Expectation

● Think of it as a center of mass, with the 
probabilities being the masses and the 
outcomes/utilities their (point) positions

● A useful statistic, but only a guide, not a complete 
picture of human decision-making

Gold Medal Bodies
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Multiple Tests
● First test:       T

1
 = { Positive, Negative }

● Second test:   T
2
 = { Positive, Negative }

● T  = T
1
 × T

2

    = { (Positive, Positive), (Positive, Negative),
          (Negative, Positive), (Negative, Negative) }

● Positive in first test = A
1

= { (Positive, Positive), (Positive, Negative) }

● Positive in second test = A
2

= { (Positive, Positive), (Negative, Positive) }

Ignoring patient
status for the
moment



Multiple Tests

● D = { Carrier, NotCarrier }

● Sample space of first test S
1
 = T

1
 × D

● Sample space of second test S
2
 = T

2
 × D

● Full sample space S  = T
1
 × T

2
 × D

● E.g. event that first test is positive, second is 
unknown, and person is a carrier:

{ (Positive, Positive, Carrier),
   (Positive, Negative, Carrier) }



Multiple Tests

● E.g. event that person is a carrier:

{ (Positive, Positive, Carrier),
   (Positive, Negative, Carrier),
   (Negative, Positive, Carrier),
   (Negative, Negative, Carrier) }

● E.g. event that first test is positive:

{ (Positive, Positive, Carrier),
   (Positive, Negative, Carrier),
   (Positive, Positive, NotCarrier),
   (Positive, Negative, NotCarrier) }



Multiple Independent Tests

● We often make the assumption that the test 
results are independent of each other (but not, of 
course, of the patient's carrier status). In other 
words:

P(Test 1 positive and Test 2 positive | Carrier)
= P(Test 1 positive | Carrier)
   P(Test 2 positive | Carrier)

and similarly for all other combinations.



Thought for the Day #1

When might this assumption be unjustified?



Multiple Independent Tests

P (C∣Y 1∩Y 2)



Multiple Independent Tests

P (C∣Y 1∩Y 2)

Is Carrier

First test positive
(said “Yes”)

Second test positive
(said “Yes”)
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P (Y 1∩Y 2∣C ) P (C )

P (Y 1∩Y 2)

P (Y 1∩Y 2∣C ) P (C)
P (Y 1∩Y 2∣C ) P (C )+P (Y 1∩Y 2∣C ' ) P (C ' )

P (C∣Y 1∩Y 2)

P (Y 1∣C) P (Y 2∣C) P (C)
P (Y 1∣C) P (Y 2∣C) P (C)+ P (Y 1∣C ' ) P (Y 2∣C ' ) P (C ')

0.99×0.99×0.001
0.99×0.99×0.001+0.05×0.05×0.999

=

=

=

=

(Bayes' Theorem)

(Total Probability Theorem)

(Independence assumption)

(From problem statement. The modeling
assumption is that these values also
apply to the product space)



Multiple Independent Tests
P (Y 1∩Y 2∣C ) P (C )

P (Y 1∩Y 2)

P (Y 1∩Y 2∣C ) P (C)
P (Y 1∩Y 2∣C ) P (C )+P (Y 1∩Y 2∣C ' ) P (C ' )

P (C∣Y 1∩Y 2)

P (Y 1∣C) P (Y 2∣C) P (C)
P (Y 1∣C) P (Y 2∣C) P (C)+ P (Y 1∣C ' ) P (Y 2∣C ' ) P (C ')

0.99×0.99×0.001
0.99×0.99×0.001+0.05×0.05×0.999

0.2818

=

=

=

=

=

(Bayes' Theorem)

(Total Probability Theorem)

(Independence assumption)

(From problem statement. The modeling
assumption is that these values also
apply to the product space)



Thought for the Day #2

Can you write down, in full, all the outcomes in each 
event involved in the previous slide? Note that these 

events are all subsets of S  = T
1
 × T

2
 × D



Thought for the Day #3

Can you work out the probability of the patient 
being a carrier, for every other combination of 

test results?
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