Priors, Total Probability, Expectation, Multiple Trials

CS 2800: Discrete Structures, Fall 2014

Sid Chaudhuri

Bayes' Theorem

- Given: prior probabilities of hypotheses, and the probability that each hypothesis produces the observed evidence
- Produces: probability of a particular hypothesis, given the observed evidence.

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Estimating $\mathrm{P}(B)$

- Total Probability Theorem: If $A_{1}, A_{2}, A_{3}, \ldots$ is a (finite or countably infinite) partition of S (they are pairwise disjoint subsets and their union is S), and B is any event in S, then

$$
\begin{array}{rlr}
\mathrm{P}(B) & =\mathrm{P}\left(\cup_{i}\left(B \cap A_{i}\right)\right) \\
& =\sum_{i} \mathrm{P}\left(B \cap A_{i}\right) & \\
& =\sum_{i} \mathrm{P}\left(B \mid A_{i}\right) \mathrm{P}\left(A_{i}\right) & \\
\text { (Axiom 3) } \\
\text { (Definition) }
\end{array}
$$

Recall: Medical Diagnosis

- Suppose:
- 1 in 1000 people carry a disease, for which there is a pretty reliable test
- Probability of a false negative (carrier tests negative) is 1% (so probability of carrier testing positive is 99%)
- Probability of a false positive (non-carrier tests positive) is 5%
- A person just tested positive. What are the chances (s)he is a carrier of the disease?

A counter-intuitive result

- The reliable test gives a positive result, but the chance the patient has the disease is only about 2\%.
- Informally: the rarity of the disease outweighs the small chance of error.

Should we stop worrying?

Should we stop worrying?

- No.

Should we stop worrying?

- No.
- The consequences of being wrong are pretty severe.

Should we stop worrying?

- No.
- The consequences of being wrong are pretty severe.
- How can we better interpret this result?

Possibilities

- You live

Possibilities

- You live
- You die
(let's assume the disease is always fatal)

Possibilities

- You live
- Improvement to your current state: +1
(if we agree living longer can enrich our life experience)
- You die (let's assume the disease is always fatal)

Possibilities

- You live
- Improvement to your current state: +1
(if we agree living longer can enrich our life experience)
- You die (let's assume the disease is always fatal)
- Improvement to your current state: -1000000

Possibilities

- You live
- Improvement to your current state: +1
(if we agree living longer can enrich our life experience)
- You die (let's assume the disease is always fatal)
- Improvement to your current state: -1000000
(Yes, I'm pulling these numbers out of a (nonprobabilistic) posterior, but they're illustrative)

Expectation

$\mathrm{P}($ Living \mid Positive $) \times$ Utility of living $+\mathrm{P}($ Dying \mid Positive $) \times$ Utility of dying

Expectation

$\mathrm{P}($ Living \mid Positive $) \times$ Utility of living $+\mathrm{P}($ Dying \mid Positive $) \times$ Utility of dying
$=0.986 \times 1+0.0194 \times-1000000$

Expectation

$\mathrm{P}($ Living \mid Positive $) \times$ Utility of living $+\mathrm{P}($ Dying \mid Positive $) \times$ Utility of dying
$=0.986 \times 1+0.0194 \times-1000000$
≈-19399

Expectation

$\mathrm{P}($ Living \mid Positive $) \times$ Utility of living
$+\mathrm{P}($ Dying \mid Positive $) \times$ Utility of dying
$=0.986 \times 1+0.0194 \times-1000000$
≈-19399

The exact value isn't meaningful in this example. Just note that despite a small probability of a bad outcome, the highly negative weighted average suggests we might have reason to be worried.

Expectation

- The expectation (or expected outcome, or expected value...) of an experiment with possible outcomes $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ is

$$
\mathrm{E}(x)=\sum_{i} \mathrm{P}\left(x_{i}\right) x_{i}
$$

Expectation

- The expectation (or expected outcome, or expected value...) of an experiment with possible outcomes $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ is

$$
\mathrm{E}(x)=\sum_{i} \mathrm{P}\left(x_{i}\right) x_{i}
$$

- If the outcomes are not numbers (or more generally, not elements of a vector space) which can be meaningfully added/scaled, we can assign them numeric "utility" values $u(x)$, and inspect the "expected utility" $\sum_{i} \mathrm{P}\left(x_{i}\right) u\left(x_{i}\right)$

Expected Weather in Ithaca

Expected Weather in SoCal

Expectation

- Think of it as a center of mass, with the probabilities being the masses and the outcomes/utilities their (point) positions

- A useful statistic, but only a guide, not a complete picture of human decision-making

Multiple Tests

- First test: $T_{1}=\{$ Positive, Negative $\}$ Ignoring Patient status for the
- Second test: $T_{2}=\{$ Positive, Negative $\}$ moment

Multiple Tests

- First test: $\quad T_{1}=\{$ Positive, Negative $\}$ Ignoring Patient status for the
- Second test: $T_{2}=\{$ Positive, Negative $\}$ moment
- $T=T_{1} \times T_{2}$

$$
\begin{aligned}
= & \{\text { (Positive, Positive), (Positive, Negative) } \\
& \text { (Negative, Positive), (Negative, Negative) }\}
\end{aligned}
$$

Multiple Tests

- First test: $T_{1}=\{$ Positive, Negative $\}$ Ignoring Patient status for the
- Second test: $T_{2}=\{$ Positive, Negative $\}$ moment
- $T=T_{1} \times T_{2}$

$$
\begin{aligned}
= & \{\text { (Positive, Positive }),(\text { Positive, Negative }) \\
& (\text { Negative, Positive }),(\text { Negative, Negative })\}
\end{aligned}
$$

- Positive in first test $=A_{1}$
$=$?

Multiple Tests

- First test: $T_{1}=\{$ Positive, Negative $\}$ Ignoring Patient status for the
- Second test: $T_{2}=\{$ Positive, Negative $\}$ moment
- $T=T_{1} \times T_{2}$

$$
\begin{aligned}
= & \{\text { (Positive, Positive }),(\text { Positive, Negative }) \\
& (\text { Negative, Positive }),(\text { Negative, Negative })\}
\end{aligned}
$$

- Positive in first test $=A_{1}$
$=\{($ Positive, Positive $),($ Positive, Negative $)\}$

Multiple Tests

- First test: $T_{1}=\{$ Positive, Negative $\}$ Ignoring Patient status for the
- Second test: $T_{2}=\{$ Positive, Negative $\}$ moment
- $T=T_{1} \times T_{2}$

$$
\begin{aligned}
= & \{\text { (Positive, Positive }),(\text { Positive, Negative }) \\
& (\text { Negative, Positive }),(\text { Negative, Negative })\}
\end{aligned}
$$

- Positive in first test $=A_{1}$
$=\{($ Positive, Positive $),($ Positive, Negative $)\}$
- Positive in second test $=A_{2}$
= ?

Multiple Tests

- First test: $T_{1}=\{$ Positive, Negative $\}$ Ignoring Patient status for the
- Second test: $T_{2}=\{$ Positive, Negative $\}$ moment
- $T=T_{1} \times T_{2}$
$=\{($ Positive, Positive $),($ Positive, Negative $)$, (Negative, Positive), (Negative, Negative) $\}$
- Positive in first test $=A_{1}$
$=\{($ Positive, Positive $),($ Positive, Negative $)\}$
- Positive in second test $=A_{2}$
$=\{($ Positive, Positive), (Negative, Positive) $\}$

Multiple Tests

- $D=\{$ Carrier, NotCarrier $\}$
- Sample space of first test $S_{1}=T_{1} \times D$
- Sample space of second test $S_{2}=T_{2} \times D$
- Full sample space $S=T_{1} \times T_{2} \times D$
- E.g. event that first test is positive, second is unknown, and person is a carrier:
\{(Positive, Positive, Carrier), (Positive, Negative, Carrier) \}

Multiple Tests

- E.g. event that person is a carrier:
\{ (Positive, Positive, Carrier), (Positive, Negative, Carrier), (Negative, Positive, Carrier), (Negative, Negative, Carrier) \}
- E.g. event that first test is positive:
\{ (Positive, Positive, Carrier), (Positive, Negative, Carrier), (Positive, Positive, NotCarrier), (Positive, Negative, NotCarrier) \}

Multiple Independent Tests

- We often make the assumption that the test results are independent of each other (but not, of course, of the patient's carrier status). In other words:
$\mathrm{P}($ Test 1 positive and Test 2 positive \mid Carrier $)$
$=\mathrm{P}($ Test 1 positive \mid Carrier $)$ P (Test 2 positive | Carrier)
and similarly for all other combinations.

Thought for the Day \#1

When might this assumption be unjustified?

Multiple Independent Tests

$$
P\left(C \mid Y_{1} \cap Y_{2}\right)
$$

Multiple Independent Tests

First test positive
(said "Yes")

Multiple Independent Tests

$$
P\left(C \mid Y_{1} \cap Y_{2}\right)=\frac{P\left(Y_{1} \cap Y_{2} \mid C\right) P(C)}{P\left(Y_{1} \cap Y_{2}\right)}
$$

Multiple Independent Tests

$$
\begin{aligned}
P\left(C \mid Y_{1} \cap Y_{2}\right) & =\frac{P\left(Y_{1} \cap Y_{2} \mid C\right) P(C)}{P\left(Y_{1} \cap Y_{2}\right)} \\
& =\frac{P\left(Y_{1} \cap Y_{2} \mid C\right) P(C)}{P\left(Y_{1} \cap Y_{2} \mid C\right) P(C)+P\left(Y_{1} \cap Y_{2} \mid C^{\prime}\right) P\left(C^{\prime}\right)}
\end{aligned}
$$

Multiple Independent Tests

$$
\begin{aligned}
P\left(C \mid Y_{1} \cap Y_{2}\right) & =\frac{P\left(Y_{1} \cap Y_{2} \mid C\right) P(C)}{P\left(Y_{1} \cap Y_{2}\right)} \\
& =\frac{P\left(Y_{1} \cap Y_{2} \mid C\right) P(C)}{P\left(Y_{1} \cap Y_{2} \mid C\right) P(C)+P\left(Y_{1} \cap Y_{2} \mid C^{\prime}\right) P\left(C^{\prime}\right)}
\end{aligned}
$$

(Total Probability Theorem)

$$
=\frac{P\left(Y_{1} \mid C\right) P\left(Y_{2} \mid C\right) P(C)}{P\left(Y_{1} \mid C\right) P\left(Y_{2} \mid C\right) P(C)+P\left(Y_{1} \mid C^{\prime}\right) P\left(Y_{2} \mid C^{\prime}\right) P\left(C^{\prime}\right)}
$$

(Independence assumption)

Multiple Independent Tests

$$
\begin{aligned}
P\left(C \mid Y_{1} \cap Y_{2}\right) & =\frac{P\left(Y_{1} \cap Y_{2} \mid C\right) P(C)}{P\left(Y_{1} \cap Y_{2}\right)} \\
& =\frac{P\left(Y_{1} \cap Y_{2} \mid C\right) P(C)}{P\left(Y_{1} \cap Y_{2} \mid C\right) P(C)+P\left(Y_{1} \cap Y_{2} \mid C^{\prime}\right) P\left(C^{\prime}\right)}
\end{aligned}
$$

(Total Probability Theorem)

$$
=\frac{P\left(Y_{1} \mid C\right) P\left(Y_{2} \mid C\right) P(C)}{P\left(Y_{1} \mid C\right) P\left(Y_{2} \mid C\right) P(C)+P\left(Y_{1} \mid C^{\prime}\right) P\left(Y_{2} \mid C^{\prime}\right) P\left(C^{\prime}\right)}
$$

(Independence assumption)
$=\frac{0.99 \times 0.99 \times 0.001}{0.99 \times 0.99 \times 0.001+0.05 \times 0.05 \times 0.999}$
(From problem statement. The modeling assumption is that these values also apply to the product space)

Multiple Independent Tests

$$
\begin{aligned}
P\left(C \mid Y_{1} \cap Y_{2}\right) & =\frac{P\left(Y_{1} \cap Y_{2} \mid C\right) P(C)}{P\left(Y_{1} \cap Y_{2}\right)} \\
& =\frac{P\left(Y_{1} \cap Y_{2} \mid C\right) P(C)}{P\left(Y_{1} \cap Y_{2} \mid C\right) P(C)+P\left(Y_{1} \cap Y_{2} \mid C^{\prime}\right) P\left(C^{\prime}\right)}
\end{aligned}
$$

(Total Probability Theorem)

$$
=\frac{P\left(Y_{1} \mid C\right) P\left(Y_{2} \mid C\right) P(C)}{P\left(Y_{1} \mid C\right) P\left(Y_{2} \mid C\right) P(C)+P\left(Y_{1} \mid C^{\prime}\right) P\left(Y_{2} \mid C^{\prime}\right) P\left(C^{\prime}\right)}
$$

(Independence assumption)
$=\frac{0.99 \times 0.99 \times 0.001}{0.99 \times 0.99 \times 0.001+0.05 \times 0.05 \times 0.999}$
(From problem statement. The modeling assumption is that these values also
$=0.2818$ apply to the product space)

Thought for the Day \#2

Can you write down, in full, all the outcomes in each event involved in the previous slide? Note that these events are all subsets of $S=T_{1} \times T_{2} \times D$

Thought for the Day \#3

Can you work out the probability of the patient being a carrier, for every other combination of test results?

