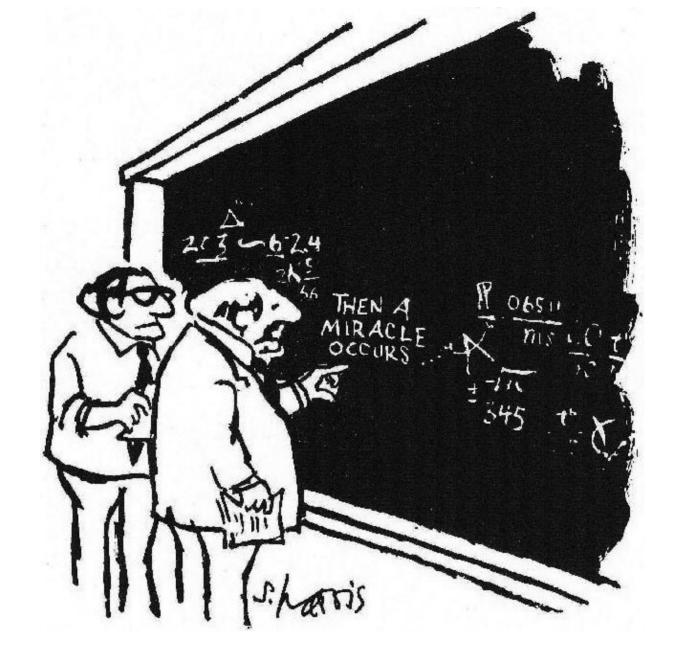
Probability 101

CS 2800: Discrete Structures, Fall 2014

Sid Chaudhuri

But first...



"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."

Euclid's Proof of Infinitude of Primes

- Suppose there is a finite number of primes
- Then there is a largest prime, p
- Consider $n = (1 \times 2 \times 3 \times ... \times p) + 1$
- n cannot be prime (p is the largest)
- Therefore it has a (prime) divisor < n
- But no number from 2 to p divides n
- So n has a prime divisor greater than p

Contradiction!!!

Euclid's Proof of Infinitude of Primes

- Suppose there is a finite number of primes
- Then there is a largest prime, p
- Consider $n = (1 \times 2 \times 3 \times ... \times p) + 1$
- *n* cannot be prime (*p* is the largest) Why?
- Therefore it has a (prime) divisor < n
- But no number from 2 to p divides n
- So n has a prime divisor greater than p

Contradiction!!!

Thought for the Day #1

Every positive integer ≥ 2 has at least one prime divisor. How would you prove this?

Thought for the Day #1

Every positive integer ≥ 2 has at least one prime divisor. How would you prove this?

(Equivalently: every non-prime ("composite") number ≥ 2 has a smaller prime divisor)

Back to Probability...

Thought for the Day #2

After how many years will a monkey produce the Complete Works of Shakespeare with more than 50% probability?

Thought for the Day #2

After how many years will a monkey produce the Complete Works of Shakespeare with more than 50% probability?

(or just an intelligible tweet?)

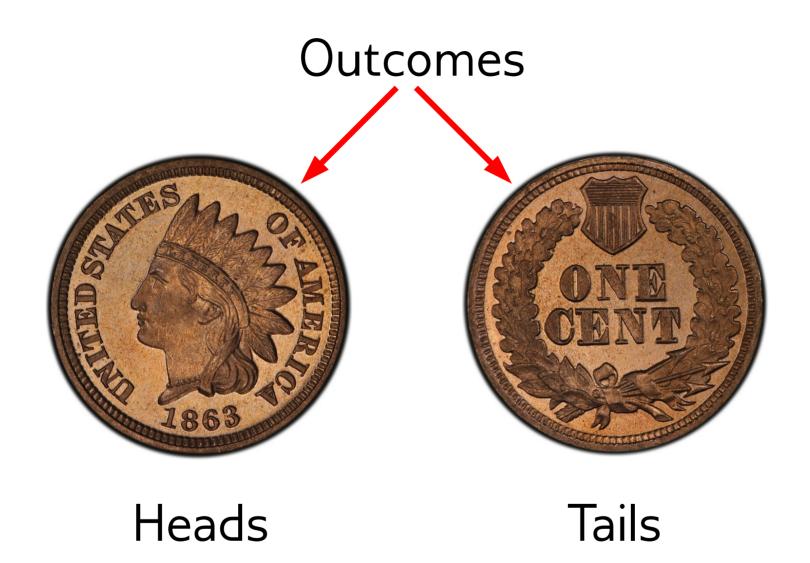
Elements of Probability Theory

- Outcome
- Sample Space
- Event
- Probability Space



Heads

Tails



Sample Space

Sample Space

Set of all possible outcomes of an experiment

Some Sample Spaces

• Coin toss: { (), () }

• Die roll: { • , • , • , • , • , • }

• Weather: { ***, ***, ***, *** }

Sample Space

Set of all <u>mutually exclusive</u> possible outcomes of an experiment

Event

Subset of sample space

• Set S: unordered collection of elements

- Set S: unordered collection of elements
- Subset of set S: set of zero, some or all elements of S

- Set S: unordered collection of elements
- Subset of set S: set of zero, some or all elements of S
- E. g. $S = \{$ a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z $\}$ $V = \{$ a, e, i, o, u $\}$

- Set S: unordered collection of elements
- Subset of set S: set of zero, some or all elements of S
- E. g. $S = \{ a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z \}$ $V = \{ a, e, i, o, u \}$ or $V = \{ x \mid x \in S \text{ and } x \text{ is a vowel } \}$

- Set S: unordered collection of elements
- Subset of set S: set of zero, some or all elements of S
- E. g. $S = \{ a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z \}$ $V = \{ a, e, i, o, u \}$ or $V = \{ x \mid x \in S \text{ and } x \text{ is a vowel } \}$

The set of

- Set S: unordered collection of elements
- Subset of set S: set of zero, some or all elements of S
- E. g. $S=\{$ a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z $\}$ $V=\{$ a, e, i, o, u $\}$ or $V=\{$ $x \mid x \in S \text{ and } x \text{ is a vowel } \}$ The set of all x's

- Set S: unordered collection of elements
- Subset of set S: set of zero, some or all elements of S
- E. g. $S=\{$ a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z $\}$ $V=\{$ a, e, i, o, u $\}$ or $V=\{$ $x \mid x \in S \text{ and } x \text{ is a vowel } \}$ The set of such that all x's

- Set S: unordered collection of elements
- Subset of set S: set of zero, some or all elements of S
- E. g. $S = \{$ a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z $\}$ $V = \{$ a, e, i, o, u $\}$ or $V = \{$ x | x \in S and x is a vowel $\}$ The set of such that all x's x is an element of S

- Set S: unordered collection of elements
- Subset of set S: set of zero, some or all elements of S
- E. g. $S = \{$ a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z $\}$ $V = \{$ a, e, i, o, u $\}$ or $V = \{$ x | x \in S and x is a vowel $\}$ The set of such that and all x's x is an element of S

- Set S: unordered collection of elements
- Subset of set S: set of zero, some or all elements of S
- E. g. $S = \{$ a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z $\}$ $V = \{$ a, e, i, o, u $\}$ or $V = \{$ x | x \in S and x is a vowel $\}$ The set of such that and all x's x is an element of S x is a vowel

- Set S: unordered collection of elements
- Subset of set S: set of zero, some or all elements of S
- E. g. $S = \{ a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z \}$ $V = \{ a, e, i, o, u \}$ or $V = \{ x \mid x \in S \text{ and } x \text{ is a vowel } \}$ or $V = \{ x \in S \mid x \text{ is a vowel } \}$

- Set S: unordered collection of elements
- Subset of set S: set of zero, some or all elements of S
- E. g. $S = \{ a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z \}$ $V = \{ a, e, i, o, u \}$ or $V = \{ x \mid x \in S \text{ and } x \text{ is a vowel } \}$ or $V = \{ x \in S \mid x \text{ is a vowel } \}$
- V is a subset of S, or $V \subseteq S$

Event

Subset of sample space

Some Events

Some Events

• Event of an odd die roll: { • , • , • }

Some Events

Event of weather like Ithaca:

Some Events

Event of weather like Ithaca:

• Event of weather like California: { }

Careful!

- The sample space is a **<u>set</u>** (of outcomes)
- An outcome is an <u>element</u> of a sample space
- An event is a <u>set</u> (a subset of the sample space)
 - It can be **empty** (the null event $\{ \}$ or \emptyset , which never happens)
 - It can contain a single outcome (simple/elementary event)
 - It can be the **entire** sample space (certain to happen)
- Strictly speaking, an outcome is <u>not</u> an event (it's not even an elementary event)

Building New Events from Old Ones

- $A \cup B$ (read 'A union B') consists of all the outcomes in A or in B (or both!)
- $A \cap B$ (read 'A intersection B') consists of all the outcomes in both A and B
- $A \setminus B$ (read 'A minus B') consists of all the outcomes in A but not in B
- A' (read 'A complement') consists of all outcomes not in A (that is, $S \setminus A$)

Probability Space

Sample space S, plus function P assigning real-valued probabilities P(E) to events $E \subseteq S$, satisfying Kolmogorov's axioms

1. For any event E, we have $P(E) \ge 0$

1. For any event E, we have $P(E) \ge 0$

2.
$$P(S) = 1$$

1. For any event E, we have $P(E) \ge 0$

2.
$$P(S) = 1$$

3. If events E_1, E_2, E_3, \dots are pairwise disjoint ("mutually exclusive"), then

$$P(E_1 \cup E_2 \cup E_3 \cup ...) = P(E_1) + P(E_2) + P(E_3) + ...$$

1. For any event E, we have $P(E) \ge 0$

2.
$$P(S) = 1$$

3. If events E_1, E_2, E_3, \dots are pairwise disjoint ("mutually exclusive"), then

$$P(E_1 \cup E_2 \cup E_3 \cup ...) = P(E_1) + P(E_2) + P(E_3) + ...$$

Thought for the Day #3

Can you prove, from the axioms, that $P(E) \le 1$ for all events E?

Equiprobable Probability Space

• All outcomes equally likely (fair coin, fair die...)

 Laplace's definition of probability (only in equiprobable space!)

$$P(E) = \frac{|E|}{|S|}$$

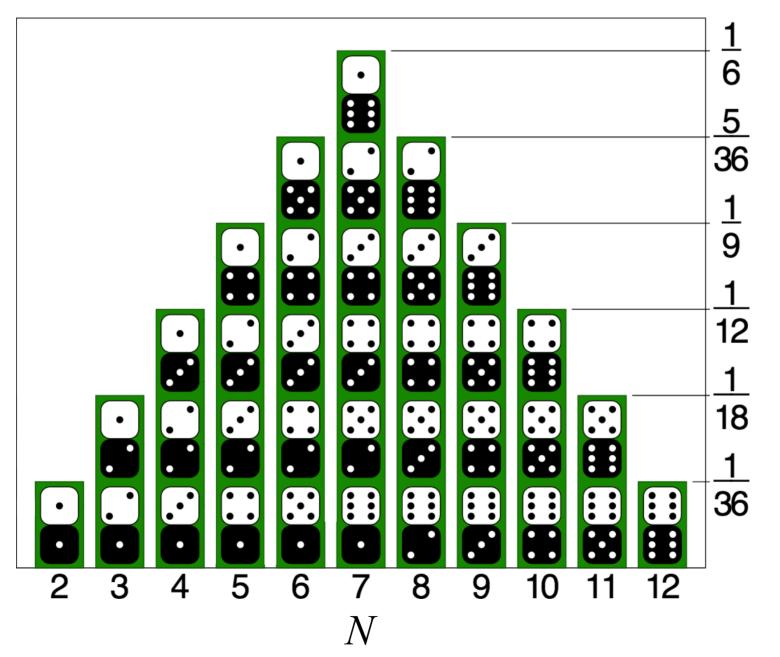
Equiprobable Probability Space

• All outcomes equally likely (fair coin, fair die...)

 Laplace's definition of probability (only in equiprobable space!)

$$P(E) = \frac{|E|}{|S|}$$
 Number of elements (outcomes) in E (outcomes) in S

P(event that sum is *N*)



Gerolamo Cardano (1501-1576)

Liar, gambler, lecher, heretic