What is “Discrete Structures”?

- Often called “Discrete Math”
- The mathematical tools that underlie computer science
- Discrete Math : Computer Science :: Calculus : Physics
What is “Discrete Structures”?

- Probability and Statistics
- Sets, Functions, Relations
- Formal Logic
- Automata
- Number Theory
- Graphs
What is “Discrete Structures”?

- Probability and Statistics
 - “Big data”/machine learning
 - Information theory
 - …
- Sets, Functions, Relations
- Formal Logic
- Automata
- Number Theory
- Graphs
What is “Discrete Structures”?

- Probability and Statistics
- Sets, Functions, Relations
 - Databases
 - Functional programming
 - …
- Formal Logic
- Automata
- Number Theory
- Graphs
What is “Discrete Structures”?

- Probability and Statistics
- Sets, Functions, Relations
- Formal Logic
 - Logical circuits
 - Formal program verification
- Automata
- Number Theory
- Graphs
What is “Discrete Structures”?

- Probability and Statistics
- Sets, Functions, Relations
- Formal Logic
- Automata
 - Games
 - Network protocols
 - Compilers
 - Nature of the universe
 - ...
- Number Theory
- Graphs
What is “Discrete Structures”?

- Probability and Statistics
- Sets, Functions, Relations
- Formal Logic
- Automata
- Number Theory
 - Cryptography
 - Geometry
 - ...
- Graphs
What is “Discrete Structures”?

- Probability and Statistics
- Sets, Functions, Relations
- Formal Logic
- Automata
- Number Theory
- Graphs
 - Social networks
 - AI, planning
 - Routing
 - ...
What is “Discrete Structures”?

- Probability and Statistics
- Sets, Functions, Relations
- Formal Logic
- Automata
- Number Theory
- Graphs
What is this course *really* about?

Math = Computation?
What is this course *really* about?

Math = Computation?

Formal, step by step reasoning (proofs)

▶ Distinguishing good arguments from bad
▶ Clearly stating definitions
 ▶ and sticking to them!
▶ **Tools for avoiding being wrong**
What is this course really about?

Math = Computation?

Formal, step by step reasoning (proofs)

▶ Distinguishing good arguments from bad
▶ Clearly stating definitions
 ▶ and sticking to them!
▶ Tools for avoiding being wrong

Reasoning abstractly

▶ Ignore the details of the objects you’re considering; work only with their properties.
 ▶ Example: I can add two integers, two real numbers, two strings, two paths on the surface of a donut
 ▶ Example: I can find shortest paths in a social network, a physical network, the flow of data in a program
What is this course really about?
Math = Computation?

Formal, step by step reasoning (proofs)
- Distinguishing good arguments from bad
- Clearly stating definitions
 - and sticking to them!
- Tools for avoiding being wrong

Reasoning abstractly
- Ignore the details of the objects you're considering; work only with their properties.
 - Example: I can add two integers, two real numbers, two strings, two paths on the surface of a donut
 - Example: I can find shortest paths in a social network, a physical network, the flow of data in a program
- Avoids getting bogged down in details
- Lets you reuse your work
Course Logistics

- Lecture
 - Designed to be useful
 - Some from Prof. George, some from Prof. Chaudhuri
 - Please no laptops.
Course Logistics

- Lecture
 - Designed to be useful
 - Some from Prof. George, some from Prof. Chaudhuri
 - Please no laptops.

- Problem Sets (weekly)
 - released Friday, due Friday (5:00 PM), graded Monday
 - judged on clarity and correctness
Course Logistics

▶ Lecture
 ▶ Designed to be useful
 ▶ Some from Prof. George, some from Prof. Chaudhuri
 ▶ Please no laptops.

▶ Problem Sets (weekly)
 ▶ released Friday, due Friday (5:00 PM), graded Monday
 ▶ judged on clarity and correctness

▶ Exams
 ▶ Two prelims (in class), one final

▶ Textbook
 ▶ No textbook
 ▶ May wish to consult “Discrete Mathematics and its Applications” by Rosen

▶ Website, CMS, Piazza
 ▶ http://www.cs.cornell.edu/Courses/cs2800/2014fa
Academic Integrity

Expectations:
- You are encouraged to work together, but . . .
- All submitted work **must** be your own

Encouraged:
- Let’s work on problem 3 together

Disallowed:
- How did you do problem 3?

Rule of thumb:
- You should be able to reproduce the paper you turned in without consulting your notes.