- 1. For each of the following pairs of sets, state whether |A| < |B|, |A| = |B|, or |A| > |B|. Justify your answer, for example by giving a bijection (no need to prove that it is a bijection), or by referring to examples from class. As usual, \mathbb{N} is the set of all natural numbers $\{1, 2, 3, \ldots\}$ and \mathbb{Z} is the set of all integers $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$.
 - (a) $A = \{1, 2, 3\}, B = \{a, b, c\}.$
 - (b) $A = \{1, 2, 3\}, B = \{a, b, c, d\}.$
 - (c) $A = \{1, 2, 3\}, B = \mathbb{Z}.$
 - (d) $A = \mathbb{N}, B = \mathbb{Z}.$
 - (e) $A = \mathbb{N}$, $B = \{0, 1\}^*$, the set of all finite strings of 0's and 1's.
 - (f) $A = \mathbb{N}, B = 2^{\mathbb{N}}$ (the power set of \mathbb{N})
- 2. In class, we gave three related definitions:

Definition of $|\cdot| = |\cdot|$: We say that |A| = |B| if there exists a bijection from A to B.

Definition of $|\cdot| \le |\cdot|$: We say that $|A| \le |B|$ if there exists an injection from A to B.

Definition of $|\cdot| \ge |\cdot|$: We say that $|A| \ge |B|$ if there exists a surjection from A to B.

This is very suggestive notation; for example you might expect that if $|A| \le |B|$ then $|B| \ge |A|$. In this question you will prove that these definitions make sense together.

- (a) Prove that $|A| \leq |B|$ if and only if $|B| \geq |A|$.
- (b) Prove that |A| = |A|.
- (c) Prove that if $|A| \leq |B|$ and $|B| \leq |C|$ then $|A| \leq |C|$.
- (d) Prove that |A| = |B| if and only if both $|A| \le |B|$ and $|A| \ge |B|$.
- 3. Given functions f and g from \mathbb{R}^+ to \mathbb{R}^+ let F(f,g) be the following statement:

$$F(f,g)$$
 = "there is some $c>0$ such that for all $x>1, f(x)\leq cg(x)$."

Let $f_1: x \mapsto x^2$ and let $f_2: x \mapsto x$. Two students are arguing about whether $F(f_1, f_2)$. Student one offers the following proof that $F(f_1, f_2)$:

"I wish to prove that there exists c > 0 such that for all x > 1, $f_1(x) \le cf_2(x)$. Let c = x. Since x > 1, we know c > 0. Moreover, for any x > 1, we have

$$cf_2(x) = x \times x = x^2 \ge x^2 = f_1(x)$$

Thus $F(f_1, f_2)$."

Student two offers the following rebuttal, claiming that $\neg F(f_1, f_2)$.

"I wish to prove that $\neg F(f_1, f_2)$. In other words, I need to show that for all c > 0, there exists an x > 1 such that $f_1(x) > cf_2(x)$. Choose an arbitrary c > 0. Let x = c + 1. Then

$$f_1(x) = f_1(c+1) = c^2 + 2c + 1 > c^2 + c = cf_2(c+1) = cf_2(x)$$

Note also that since c > 0, x > 1. Thus there exists such an x > 1 for each c > 0, so I have shown $\neg F(f_1, f_2)$."

The student who is incorrect has proved something different than what they are claiming. Which student is it, and what have they proved?