- 1. State the negation of each of these statements in simple English. (Do not simply prepend a phrase like "It is not the case that...").
 - (a) All dogs have fleas.
 - (b) There is a horse that can add.
 - (c) Every koala can climb.
 - (d) There exists a pig that can swim and catch fish.
 - (e) In every country, there is a city by a river.
 - (f) Old MacDonald had a farm, and on that farm he had a cow.
 - (g) Every person in this class understands discrete mathematics.
 - (h) Some students in this class do not like discrete mathematics.
 - (i) In every mathematics class there is some student who falls asleep during lectures.
 - (j) There is a student in this class that can beat every other student in the class at chess.
- 2. Let F(x,y) be the statement "x can fool y," where the domain consists of all people in the world. Use quantifiers to express each of these statements.
 - (a) Everybody can fool Fred.
 - (b) Evelyn can fool everybody.
 - (c) Everybody can fool somebody.
 - (d) There is no one who can fool everybody.
 - (e) Everyone can be fooled by somebody.
 - (f) No one can fool both Fred and Jerry.
 - (g) Nancy can fool exactly two people.
- 3. (a) A function $f:A\to A$ is called involutive if for all $x\in A$, f(f(x))=x. Prove or disprove:
 - i. if f is involutive, then it is injective.
 - ii. if f is involutive, then it is surjective.
 - (b) A function $f: A \to A$ is called idempotent if for all $x \in A$, f(f(x)) = f(x). Prove or disprove:
 - i. if f is idempotent, then it is injective.
 - ii. if f is idempotent, then it is surjective.
 - (c) If $f: B \to C$ and $g: A \to B$ are functions, then $f \circ g$ is the function from A to C defined by: $(f \circ g): x \mapsto f(g(x))$. Prove or disprove: if f and $f \circ g$ are one-to-one, then g is one-to-one.
- 4. In the first few homeworks, we asserted various facts about sets. We will now prove two of them. Given two sets $A \subseteq S$ and $B \subseteq S$, show that
 - (a) $A \cup B = (A \setminus B) \cup (A \cap B) \cup (B \setminus A)$.
 - (b) $(A \setminus B) \cap (A \cap B) = \emptyset$.

Note that the formal definition of equality for sets is that A = B if $A \subseteq B$ and $B \subseteq A$, and the formal definition of subset is $A \subseteq B$ if for all $x \in A$, $x \in B$. Definitions for \cup , \cap , \setminus and \emptyset are on the lecture slides.