Permutations

A *permutation* of \(n \) things taken \(r \) at a time, written \(P(n, r) \), is an arrangement in a row of \(r \) things, taken from a set of \(n \) distinct things. Order matters.

Example 6: How many permutations are there of 5 things taken 3 at a time?

Answer: 5 choices for the first thing, 4 for the second, 3 for the third: \(5 \times 4 \times 3 = 60 \).

- If the 5 things are \(a, b, c, d, e \), some possible permutations are:

 \[
 \begin{align*}
 abc & \quad abd & \quad a be & \quad acb & \quad acd & \quad ace \\
 adb & \quad adc & \quad ade & \quad a eb & \quad a ec & \quad a ed \\
 \cdots
 \end{align*}
 \]

In general

\[
P(n, r) = \frac{n!}{(n - r)!} = n(n - 1) \cdots (n - r + 1)
\]
Combinations

A combination of n things taken r at a time, written $C(n, r)$ or $\binom{n}{r}$ ("n choose r") is any subset of r things from n things. Order makes no difference.

Example 7: How many ways are there of choosing 3 things from 5?

Answer: If order mattered, then it would be $5 \times 4 \times 3$. Since order doesn’t matter,

$$\text{abc, acb, bac, bca, cab, cba}$$

are all the same.

- For way of choosing three elements, there are $3! = 6$ ways of ordering them.

Therefore, the right answer is $(5 \times 4 \times 3)/3! = 10$:

$$\text{abc, abd, abe, acd, ace}$$
$$\text{ade, bcd, bce, bde, cde}$$

In general

$$C(n, r) = \frac{n!}{(n-r)!r!} = \frac{n(n-1) \cdots (n-r+1)}{r!}$$
More Examples

Example 8: How many full houses are there in poker?

- A full house has 5 cards, 3 of one kind and 2 of another.
- E.g.: 3 5’s and 2 K’s.

Answer: You need to find a systematic way of counting:

- Choose the denomination for which you have three of a kind: 13 choices.
- Choose the three: $C(4, 3) = 4$ choices
- Choose the denomination for which you have two of a kind: 12 choices
- Choose the two: $C(4, 2) = 6$ choices.

Altogether, there are:

$$13 \times 4 \times 12 \times 6 = 3744$$ choices
0!

It’s useful to define $0! = 1$.

Why?

1. Then we can inductively define

$$(n + 1)! = (n + 1)n!,$$

and this definition works even taking 0 as the base case instead of 1.

2. A better reason: Things work out right for $P(n, 0)$ and $C(n, 0)$!

How many permutations of n things from n are there?

$$P(n, n) = \frac{n!}{(n - n)!} = \frac{n!}{0!} = n!$$

How many ways are there of choosing n out of n? 0 out of n?

$$\binom{n}{n} = \frac{n!}{n!0!} = 1$$

$$\binom{n}{0} = \frac{n!}{0!n!} = 1$$
More Questions

Q: How many ways are there of choosing k things from $\{1, \ldots, n\}$ if 1 and 2 can’t both be chosen? (Suppose $n, k \geq 2$.)

A: First find all the ways of choosing k things from n—$C(n, k)$. Then subtract the number of those ways in which both 1 and 2 are chosen:

- This amounts to choosing $k-2$ things from $\{3, \ldots, n\}$: $C(n - 2, k - 2)$.

Thus, the answer is

$$C(n, k) - C(n - 2, k - 2)$$

Q: What if order matters?

A: Have to compute how many ways there are of picking k things, two of which are 1 and 2.

$$P(n, k) - k(k - 1)P(n - 2, k - 2)$$
Q: How many ways are there to distribute four distinct balls evenly between two distinct boxes (two balls go in each box)?

A: All you need to decide is which balls go in the first box.

\[C(4, 2) = 6 \]

Q: What if the boxes are indistinguishable?

A: \(C(4, 2)/2 = 3 \).
Combinatorial Identities

There all lots of identities that you can form using $C(n, k)$. They seem mysterious at first, but there’s usually a good reason for them.

Theorem 1: If $0 \leq k \leq n$, then

$$C(n, k) = C(n, n - k).$$

Proof:

$$C(n, k) = \frac{n!}{k!(n - k)!} = \frac{n!}{(n - k)!(n - (n - k))!} = C(n, n - k)$$

Q: Why should choosing k things out of n be the same as choosing $n - k$ things out of n?

A: There’s a 1-1 correspondence. For every way of choosing k things out of n, look at the things not chosen: that’s a way of choosing $n - k$ things out of n.

This is a better way of thinking about Theorem 1 than the combinatorial proof.
Theorem 2: If $0 < k < n$ then

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

Proof 1: (Combinatorial) Suppose we want to choose k objects out of \{1, \ldots, n\}. Either we choose the last one (n) or we don’t.

1. How many ways are there of choosing k without choosing the last one? $C(n-1, k)$.

2. How many ways are there of choosing k including n? This means choosing $k - 1$ out of \{1, \ldots, n - 1\}: $C(n-1, k-1)$.

Proof 2: Algebraic . . .

Note: If we define $C(n, k) = 0$ for $k > n$ and $k < 0$, Theorems 1 and 2 still hold.
Pascal’s Triangle

Starting with $n = 0$, the nth row has $n + 1$ elements:

$C(n, 0), \ldots, C(n, n)$

Note how Pascal’s Triangle illustrates Theorems 1 and 2.
Theorem 3: For all \(n \geq 0 \):

\[
\sum_{k=0}^{n} \binom{n}{k} = 2^n
\]

Proof 1: \(\binom{n}{k} \) tells you all the way of choosing a subset of size \(k \) from a set of size \(n \). This means that the LHS is all the ways of choosing a subset from a set of size \(n \). The product rule says that this is \(2^n \).

Proof 2: By induction. Let \(P(n) \) be the statement of the theorem.

Basis: \(\sum_{k=0}^{0} \binom{0}{k} = \binom{0}{0} = 1 = 2^0 \). Thus \(P(0) \) is true.

Inductive step: How do we express \(\sum_{k=0}^{n} \binom{n}{k} \) in terms of \(n - 1 \), so that we can apply the inductive hypothesis?

- Use Theorem 2!
More combinatorial identities

Theorem 4: For any nonnegative integer \(n \)

\[
\sum_{k=0}^{n} k \binom{n}{k} = n 2^{n-1}
\]

Proof 1:

\[
\sum_{k=0}^{n} k \binom{n}{k} = \sum_{k=1}^{n} k \frac{n!}{(n-k)!k!}
\]

\[
= \sum_{k=1}^{n} n \frac{n!}{(n-k)!(k-1)!}
\]

\[
= n \sum_{k=1}^{n} \frac{(n-1)!}{(n-k)!(k-1)!}
\]

\[
= n \sum_{j=0}^{n-1} \frac{(n-1)!}{(n-1-j)!j!} \quad \text{[Let } j = k - 1 \text{]}
\]

\[
= n \sum_{j=0}^{n-1} \binom{n-1}{j}
\]

\[
= n 2^{n-1}
\]

Proof 2: LHS tells you all the ways of picking a subset of \(k \) elements out of \(n \) (a subcommittee) and designating one of its members as special (subcommittee chairman).

What’s another way of doing this? Pick the chairman first, and then the rest of the subcommittee!
Theorem 5:

\[(n - k)\binom{n}{k} = (k + 1)\binom{n}{k+1} = n\binom{n-1}{k}\]

Theorem 6:

\[C(n, k)C(n - k, j) = C(n, j)C(n - j, k) = C(n, k + j)C(k + j, j)\]

Theorem 7: \(P(n, k) = nP(n - 1, k - 1)\).
The Binomial Theorem

We want to compute \((x + y)^n\).

Some examples:

\[(x + y)^0 = 1\]
\[(x + y)^1 = x + y\]
\[(x + y)^2 = x^2 + 2xy + y^2\]
\[(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3\]
\[(x + y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4\]

The pattern of the coefficients is just like that in the corresponding row of Pascal’s triangle!

Binomial Theorem:

\[(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k\]

Proof 1: By induction on \(n\). \(P(n)\) is the statement of the theorem.

Basis: \(P(1)\) is obviously OK. (So is \(P(0)\).)
Inductive step:

\[(x + y)^{n+1}\]
\[= (x + y)(x + y)^n\]
\[= (x + y)\sum_{k=0}^{n} \binom{n}{k}x^{n-k}y^k\]
\[= \sum_{k=0}^{n} \binom{n}{k}x^{n-k+1}y^k + \sum_{k=0}^{n} \binom{n}{k}x^{n-k}y^{k+1}\]
\[= \ldots \text{[Lots of missing steps]}\]
\[= y^{n+1} + \sum_{k=0}^{n} \left(\binom{n}{k} + \binom{n}{k-1} \right)x^{n-k+1}y^k\]
\[= y^{n+1} + \sum_{k=0}^{n} \binom{n+1}{k}x^{n+1-k}y^k\]
\[= \sum_{k=0}^{n+1} \binom{n+1}{k}x^{n+1-k}y^k\]

Proof 2: What is the coefficient of the \(x^{n-k}y^k\) term in \((x + y)^n\)?
Using the Binomial Theorem

Q: What is \((x + 2)^4\)?

A:
\[
(x + 2)^4 = x^4 + C(4, 1)x^32 + C(4, 2)x^22^2 + C(4, 3)x2^3 + 2^4
= x^4 + 8x^3 + 24x^2 + 32x + 16
\]

Q: What is \((1.02)^7\) to 4 decimal places?

A:
\[
(1 + .02)^7 = 1^7 + C(7, 1)1^6(.02) + C(7, 2)1^5(.0004) + C(7, 3)(.000008) + \cdots
= 1 + .14 + .0084 + .0028 + \cdots
\approx 1.14868
\approx 1.1487
\]

Note that we have to go to 5 decimal places to compute the answer to 4 decimal places.
In the book they talk about the *multinomial theorem*. That’s for dealing with \((x + y + z)^n\).

They also talk about the *binomial series theorem*. That’s for dealing with \((x + y)^\alpha\), when \(\alpha\) is any *real* number (like 0.3).

You’re not responsible for these results.