Questions/Complaints About Homework?

Here’s the procedure for homework questions/complaints:
1. Read the solutions first.
2. Talk to the person who graded it (check initials)
3. If (1) and (2) don’t work, talk to me.

Further comments:
• There’s no statute of limitations on grade changes
 ○ although asking questions right away is a good strategy
• Remember that 10/12 homeworks count. Each one is roughly worth 50 points, and homework is 35% of your final grade.
 ○ 16 homework points = 1% on your final grade
• Remember we’re grading about 100 homeworks and graders are not expected to be mind readers. It’s your problem to write clearly.
• Don’t forget to staple your homework pages together, add the cover sheet, and put your name on clearly.
 ○ I’ll deduct 2 points if that’s not the case
Algorithmic number theory

Number theory used to be viewed as the purest branch of pure mathematics.

- Now it’s the basis for most modern cryptography.
- Absolutely critical for e-commerce
 - How do you know your credit card number is safe?

Goal:

- To give you a basic understanding of the mathematics behind the RSA cryptosystem
 - Need to understand how prime numbers work
Division

For $a, b \in \mathbb{Z}$, $a \neq 0$, a divides b if there is some $c \in \mathbb{Z}$ such that $b = ac$.

- Notation: $a \mid b$
- Examples: $3 \mid 9$, $3 \nmid 7$

If $a \mid b$, then a is a factor of b, b is a multiple of a.

Theorem 1: If $a, b, c \in \mathbb{Z}$, then

1. if $a \mid b$ and $a \mid c$ then $a \mid (b + c)$.
2. If $a \mid b$ then $a \mid (bc)$
3. If $a \mid b$ and $b \mid c$ then $a \mid c$ (divisibility is transitive).

Proof: How do you prove this? Use the definition!

- E.g., if $a \mid b$ and $a \mid c$, then, for some d_1 and d_2,

 \[b = ad_1 \text{ and } c = ad_2. \]

- That means $b + c = a(d_1 + d_2)$

- So $a \mid (b + c)$.

Other parts: homework.

Corollary 1: If $a \mid b$ and $a \mid c$, then $a \mid (mb + nc)$ for any integers m and n.
The division algorithm

Theorem 2: For \(a \in \mathbb{Z} \) and \(d \in \mathbb{N}, d > 0 \), there exist unique \(q, r \in \mathbb{Z} \) such that \(a = q \cdot d + r \) and \(0 \leq r < d \).

- \(r \) is the remainder when \(a \) is divided by \(d \)

Notation: \(r \equiv a \pmod{d} \); \(a \mod d = r \)

Examples:

- Dividing 101 by 11 gives a quotient of 9 and a remainder of 2 (\(101 \equiv 2 \pmod{11} \); 101 mod 11 = 2).
- Dividing 18 by 6 gives a quotient of 3 and a remainder of 0 (\(18 \equiv 0 \pmod{6} \); 18 mod 6 = 0).

Proof: Let \(q = \lfloor a/d \rfloor \) and define \(r = a - q \cdot d \).

- So \(a = q \cdot d + r \) with \(q \in \mathbb{Z} \) and \(0 \leq r < d \) (since \(q \cdot d \leq a \)).

But why are \(q \) and \(d \) unique?

- Suppose \(q \cdot d + r = q' \cdot d + r' \) with \(q', r' \in \mathbb{Z} \) and \(0 \leq r' < d \).
- Then \((q' - q)d = (r - r') \) with \(-d < r - r' < d \).
- The lhs is divisible by \(d \) so \(r = r' \) and we’re done.
Primes

• If $p \in \mathbb{N}$, $p > 1$ is prime if its only positive factors are 1 and p.

• $n \in \mathbb{N}$ is composite if $n > 1$ and n is not prime.

 ◦ If n is composite then $a \mid n$ for some $a \in \mathbb{N}$ with $1 < a < n$
 ◦ Can assume that $a \leq \sqrt{n}$.

 * Proof: By contradiction:

 Suppose $n = bc$, $b > \sqrt{n}$, $c > \sqrt{n}$. But then $bc > n$, a contradiction.

Primes: 2, 3, 5, 7, 11, 13, . . .
Composites: 4, 6, 8, 9, . . .
Primality testing

How can we tell if \(n \in \mathbb{N} \) is prime?

The naive approach: check if \(k \mid n \) for every \(1 < k < n \).

- But at least \(10^{m-1} \) numbers are \(\leq n \), if \(n \) has \(m \) digits
 - \(1000 \) numbers less than 1000 (a 4-digit number)
 - \(1,000,000 \) less than 1,000,000 (a 7-digit number)

So the algorithm is \textit{exponential time}!

We can do a little better

- Skip the even numbers
- That saves a factor of 2 \(\longrightarrow \) not good enough
- Try only primes (Sieve of Eratosthenes)
 - Still doesn’t help much

We can do much better:

- There is a polynomial time \textit{randomized} algorithm
 - We will discuss this when we talk about probability
- In 2002, Agarwal, Saxena, and Kayal gave a (non-probabilistic) polynomial time algorithm
 - Saxena and Kayal were undergrads in 2002!
The Fundamental Theorem of Arithmetic

Theorem 3: Every natural number \(n > 1 \) can be uniquely represented as a product of primes, written in nondecreasing size.

- Examples: \(54 = 2 \cdot 3^3, 100 = 2^2 \cdot 5^2, 15 = 3 \cdot 5 \).

Proving that that \(n \) can be written as a product of primes is easy (by strong induction):

- Base case: 2 is the product of primes (just 2)
- Inductive step: If \(n > 2 \) is prime, we are done. If not, \(n = ab \).
 - Must have \(a < n, b < n \).
 - By I.H., both \(a \) and \(b \) can be written as a product of primes
 - So \(n \) is product of primes

Proving uniqueness is harder.

- We’ll do that in a few days …
An Algorithm for Prime Factorization

Fact: If a is the smallest number > 1 that divides n, then a is prime.

Proof: By contradiction. (Left to the reader.)

- A *multiset* is like a set, except repetitions are allowed
 - $\{\{2, 2, 3, 3, 5\}\}$ is a multiset, not a set

<table>
<thead>
<tr>
<th>PF(n): A prime factorization procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: $n \in N^+$</td>
</tr>
<tr>
<td>Output: PFS - a multiset of n’s prime factors</td>
</tr>
<tr>
<td>PFS := \emptyset</td>
</tr>
<tr>
<td>for $a = 2$ to $\lfloor \sqrt{n} \rfloor$ do</td>
</tr>
<tr>
<td>if $a \mid n$ then PFS := PF(n/a) \cup ${{a}}$ return PFS</td>
</tr>
<tr>
<td>if PFS = \emptyset then PFS := ${{n}}$ [n is prime]</td>
</tr>
</tbody>
</table>

Example: PF(7007) = $\{\{7\}\} \cup$ PF(1001)
= $\{\{7, 7\}\} \cup$ PF(143)
= $\{\{7, 7, 11\}\} \cup$ PF(13)
= $\{\{7, 7, 11, 13\}\}$.

8
The Complexity of Factoring

Algorithm PF runs in exponential time:

- We’re checking every number up to \sqrt{n}

Can we do better?

- We don’t know.
- Modern-day cryptography implicitly depends on the fact that we can’t!
How Many Primes Are There?

Theorem 4: [Euclid] There are infinitely many primes.

Proof: By contradiction.

- Suppose that there are only finitely many primes: \(p_1, \ldots, p_n \).
- Consider \(q = p_1 \times \cdots \times p_n + 1 \)
- Clearly \(q > p_1, \ldots, p_n \), so it can’t be prime.
- So \(q \) must have a prime factor, which must be one of \(p_1, \ldots, p_n \) (since these are the only primes).
- Suppose it is \(p_i \).
 - Then \(p_i \mid q \) and \(p_i \mid p_1 \times \cdots \times p_n \)
 - So \(p_i \mid (q - p_1 \times \cdots \times p_n) \); i.e., \(p_i \mid 1 \) (Corollary 1)
 - Contradiction!

Largest currently-known prime (as of 5/04):

- \(2^{24036583} - 1 \): 7235733 digits

- Check www.utm.edu/research/primes

Primes of the form \(2^p - 1 \) where \(p \) is prime are called Mersenne primes.

- Search for large primes focuses on Mersenne primes
The distribution of primes

There are quite a few primes out there:

- Roughly one in every $\log(n)$ numbers is prime

Formally: let $\pi(n)$ be the number of primes $\leq n$:

Prime Number Theorem: $\pi(n) \sim n/\log(n)$; that is,

$$\lim_{n \to \infty} \frac{\pi(n)}{(n/\log(n))} = 1$$

Why is this important?

- Cryptosystems like RSA use a secret key that is the product of two large (100-digit) primes.

- How do you find two large primes?

 - Roughly one of every 100 100-digit numbers is prime

 - To find a 100-digit prime:

 * Keep choosing odd numbers at random

 * Check if they are prime (using fast randomized primality test)

 * Keep trying until you find one

 * Roughly 100 attempts should do it
(Some) Open Problems Involving Primes

- Are there infinitely many Mersenne primes?
- Goldbach’s Conjecture: every even number greater than 2 is the sum of two primes.
 - E.g., $6 = 3 + 3$, $20 = 17 + 3$, $28 = 17 + 11$
 - This has been checked out to 6×10^{16} (as of 2003)
 - Every sufficiently large integer ($> 10^{43,000}$!) is the sum of four primes
- Two prime numbers that differ by two are twin primes
 - E.g.: $(3,5)$, $(5,7)$, $(11,13)$, $(17,19)$, $(41,43)$
 - also $4,648,619,711,505 \times 2^{60,000} \pm 1!$

Are there infinitely many twin primes?

All these conjectures are believed to be true, but no one has proved them.
Greatest Common Divisor (gcd)

Definition: For \(a \in \mathbb{Z} \) let \(D(a) = \{ k \in \mathbb{N} : k \mid a \} \)
- \(D(a) = \{ \text{divisors of } a \} \).

Claim. \(|D(a)| < \infty\) if (and only if) \(a \neq 0 \).

Proof: If \(a \neq 0 \) and \(k \mid a \), then \(0 < k < a \).

Definition: For \(a, b \in \mathbb{Z} \), \(CD(a, b) = D(a) \cap D(b) \) is the set of common divisors of \(a, b \).

Definition: The *greatest common divisor* of \(a \) and \(b \) is

\[
gcd(a, b) = \max(CD(a, b)).
\]

Examples:
- \(\gcd(6, 9) = 3 \)
- \(\gcd(13, 100) = 1 \)
- \(\gcd(6, 45) = 3 \)

Def. \(a \) and \(b \) are *relatively prime* if \(\gcd(a, b) = 1 \).

- **Example:** 4 and 9 are relatively prime.
- Two numbers are relatively prime iff they have no common prime factors.

Efficient computation of \(\gcd(a, b) \) lies at the heart of commercial cryptography.
Least Common Multiple (lcm)

Definition: The *least common multiple* of $a, b \in \mathbb{N}^+$, \(\text{lcm}(a, b) \), is the smallest $n \in \mathbb{N}^+$ such that $a \mid n$ and $b \mid n$.

- **Examples:** \(\text{lcm}(4, 9) = 36 \), \(\text{lcm}(4, 10) = 20 \).
Computing the GCD

There is a method for calculating the gcd that goes back to Euclid:

- **Recall:** if $n > m$ and q divides both n and m, then q divides $n - m$ and $n + m$.

Therefore $\gcd(n, m) = \gcd(m, n - m)$.

- **Proof:** Show that $CD(n, m) = CD(m, n - m)$; i.e. show that q divides both n and m iff q divides both m and $n - m$. (If q divides n and m, then q divides $n - m$ by the argument above. If q divides m and $n - m$, then q divides $m + (n - m) = n$.)

- This allows us to reduce the gcd computation to a simpler case.

We can do even better:

- $\gcd(n, m) = \gcd(m, n - m) = \gcd(m, n - 2m) = \ldots$
- keep going as long as $n -qm \geq 0 — \lfloor n/m \rfloor$ steps

Consider $\gcd(6, 45)$:

- $\lfloor 45/6 \rfloor = 7$; remainder is 3 ($45 \equiv 3 \pmod{6}$)
- $\gcd(6, 45) = \gcd(6, 45 - 7 \times 6) = \gcd(6, 3) = 3$
We can keep this up this procedure to compute \(\gcd(n_1, n_2) \):

- If \(n_1 \geq n_2 \), write \(n_1 \) as \(q_1n_2 + r_1 \), where \(0 \leq r_1 < n_2 \)
 - \(q_1 = \lfloor n_1/n_2 \rfloor \)
- \(\gcd(n_1, n_2) = \gcd(r_1, n_2) \)
- Now \(r_1 < n_2 \), so switch their roles:
 - \(n_2 = q_2r_1 + r_2 \), where \(0 \leq r_2 < r_1 \)
 - \(\gcd(r_1, n_2) = \gcd(r_1, r_2) \)
- Notice that \(\max(n_1, n_2) > \max(r_1, n_2) > \max(r_1, r_2) \)
- Keep going until we have a remainder of 0 (i.e., something of the form \(\gcd(r_k, 0) \) or \(\gcd(0, r_k) \))
 - This is bound to happen sooner or later
Euclid’s Algorithm

Input m, n \ [m, n$ natural numbers, $m \geq n$]

$\text{num} \leftarrow m; \ \text{denom} \leftarrow n$ \ [Initialize num and denom]

\textbf{repeat until} $\text{denom} = 0$

$q \leftarrow \lfloor \text{num}/\text{denom} \rfloor$

$\text{rem} \leftarrow \text{num} - (q \times \text{denom})$ \ [$\text{num} \mod \text{denom} = \text{rem}$]

$\text{num} \leftarrow \text{denom}$ \ [New num]

$\text{denom} \leftarrow \text{rem}$ \ [New denom; note $\text{num} \geq \text{denom}$]

\textbf{endrepeat}

Output num \ [$\text{num} = \gcd(m, n)$]

Example: $\gcd(84, 33)$

Iteration 1: $\text{num} = 84, \ \text{denom} = 33, \ q = 2, \ \text{rem} = 18$

Iteration 2: $\text{num} = 33, \ \text{denom} = 18, \ q = 1, \ \text{rem} = 15$

Iteration 3: $\text{num} = 18, \ \text{denom} = 15, \ q = 1, \ \text{rem} = 3$

Iteration 4: $\text{num} = 15, \ \text{denom} = 3, \ q = 5, \ \text{rem} = 0$

Iteration 5: $\text{num} = 3, \ \text{denom} = 0 \Rightarrow \gcd(84, 33) = 3$
Euclid’s Algorithm: Correctness

How do we know this works?

- We need to prove that

 (a) the algorithm terminates and
 (b) that it correctly computes the gcd

We prove (a) and (b) simultaneously by finding appropriate loop invariants and using induction:

- Notation: Let \(num_k \) and \(denom_k \) be the values of \(num \) and \(denom \) at the beginning of the \(k \)th iteration.

\(P(k) \) has three parts:

1. \(0 < num_k + 1 + denom_k + 1 < num_k + denom_k \)
2. \(0 \leq denom_k \leq num_k \).
3. \(\gcd(num_k, denom_k) = \gcd(m, n) \)

- Termination follows from parts (1) and (2): if \(num_k + denom_k \) decreases and \(0 \leq denom_k \leq num_k \), then eventually \(denom_k \) must hit 0.

- Correctness follows from part (3).

- The induction step is proved by looking at the details of the loop.
Euclid’s Algorithm: Complexity

Input m, n
[{m, n natural numbers, $m \geq n$}]

$num \leftarrow m; \ denom \leftarrow n$
[Initialize num and $denom$]

repeat until $denom = 0$

$q \leftarrow \lfloor\frac{num}{denom}\rfloor$

$rem \leftarrow num - (q \times denom)$

$num \leftarrow denom$
[New num]

$denom \leftarrow rem$
[New $denom$; note $num \geq denom$]

endrepeat

Output num
[$num = \gcd(m, n)$]

How many times do we go through the loop in the Euclidean algorithm:

• Best case: Easy. Never!

• Average case: Too hard

• Worst case: Can’t answer this exactly, but we can get a good upper bound.

 • See how fast $denom$ goes down in each iteration.
Claim: After two iterations, \(denom \) is halved:

- Recall \(num = q \times denom + rem \). Use \(denom' \) and \(denom'' \) to denote value of \(denom \) after 1 and 2 iterations. Two cases:

 1. \(rem \leq denom/2 \Rightarrow denom' \leq denom/2 \) and \(denom'' < denom/2 \).

 2. \(rem > denom/2 \). But then \(num' = denom \), \(denom' = rem \). At next iteration, \(q = 1 \), and \(denom'' = rem' = num' - denom' < denom/2 \)

- How long until \(denom \) is \(\leq 1 \)?

 \(o < 2 \log_2(m) \) steps!

- After at most \(2 \log_2(m) \) steps, \(denom = 0 \).
The Extended Euclidean Algorithm

Theorem 5: For $a, b \in \mathbb{N}$, not both 0, we can compute $s, t \in \mathbb{Z}$ such that

$$\gcd(a, b) = sa + tb.$$

- **Example:** $\gcd(9, 4) = 1 = 1 \cdot 9 + (-2) \cdot 4$.

Proof: By strong induction on $\max(a, b)$. Suppose without loss of generality $a \leq b$.

- If $\max(a, b) = 1$, then must have $b = 1$, $\gcd(a, b) = 1$
 - $\gcd(a, b) = 0 \cdot a + 1 \cdot b$.

- If $\max(a, b) > 1$, there are three cases:
 - $a = 0$; then $\gcd(0, b) = b = 0 \cdot a + 1 \cdot b$
 - $a = b$; then $\gcd(a, b) = a = 1 \cdot a + 0 \cdot b$
 - If $0 < a < b$, then $\gcd(a, b) = \gcd(a, b - a)$. Moreover, $\max(a, b) > \max(a, b - a)$. Thus, by IH, we can compute s, t such that
 $$\gcd(a, b) = \gcd(a, b-a) = sa + t(b-a) = (s-t)a + tb.$$

 Note: this computation basically follows the “recipe” of Euclid’s algorithm.
Example of Extended Euclidean Algorithm

Recall that $\text{gcd}(84, 33) = \text{gcd}(33, 18) = \text{gcd}(18, 15) = \text{gcd}(15, 3) = \text{gcd}(3, 0) = 3$

We work backwards to write 3 as a linear combination of 84 and 33:

\[
3 = 18 - 15
\]

[Now 3 is a linear combination of 18 and 15]

\[
= 18 - (33 - 18)
\]

\[
= 2(18) - 33
\]

[Now 3 is a linear combination of 18 and 33]

\[
= 2(84 - 2 \times 33)) - 33
\]

\[
= 2 \times 84 - 5 \times 33
\]

[Now 3 is a linear combination of 84 and 33]
Some Consequences

Corollary 2: If a and b are relatively prime, then there exist s and t such that $as + bt = 1$.

Corollary 3: If $\gcd(a, b) = 1$ and $a \mid bc$, then $a \mid c$.

Proof:
- Exist $s, t \in \mathbb{Z}$ such that $sa + tb = 1$
- Multiply both sides by c: $sac + tbc = c$
- Since $a \mid bc$, $a \mid sac + tbc$, so $a \mid c$

Corollary 4: If p is prime and $p \mid \prod_{i=1}^{n} a_i$, then $p \mid a_i$ for some $1 \leq i \leq n$.

Proof: By induction on n:
- If $n = 1$: trivial.

Suppose the result holds for n and $p \mid \prod_{i=1}^{n+1} a_i$.
- note that $p \mid \prod_{i=1}^{n+1} a_i = (\prod_{i=1}^{n} a_i)a_{n+1}$.
- If $p \mid a_{n+1}$ we are done.
- If not, $\gcd(p, a_{n+1}) = 1$.
- By Corollary 3, $p \mid \prod_{i=1}^{n} a_i$
- By the IH, $p \mid a_i$ for some $1 \leq i \leq n$.
The Fundamental Theorem of Arithmetic, II

Theorem 3: Every $n > 1$ can be represented uniquely as a product of primes, written in nondecreasing size.

Proof: Still need to prove uniqueness. We do it by strong induction.

- **Base case:** Obvious if $n = 2$.

Inductive step. Suppose OK for $n' < n$.

- Suppose that $n = \prod_{i=1}^{s} p_i = \prod_{j=1}^{r} q_j$.
- $p_1 | \prod_{j=1}^{r} q_j$, so by Corollary 4, $p_1 | q_j$ for some j.
- But then $p_1 = q_j$, since both p_1 and q_j are prime.
- But then $n/p_1 = p_2 \cdots p_s = q_1 \cdots q_{j-1} q_{j+1} \cdots q_r$
- Result now follows from I.H.