Probability Distributions

If X is a random variable on sample space S, then the probability that X takes on the value c is

$$\Pr(X = c) = \Pr(\{s \in S \mid X(s) = c\})$$

Similarly,

$$\Pr(X \le c) = \Pr(\{s \in S \mid X(s) \le c\}.$$

This makes sense since the range of X is the real numbers.

Example: In the coin example,

$$\Pr(\#H = 2) = 4/9 \text{ and } \Pr(\#H \le 1) = 5/9$$

Given a probability measure Pr on a sample space S and a random variable X, the *probability distribution* associated with X is $f_X(x) = \Pr(X = x)$.

• f_X is a probability measure on the real numbers.

The *cumulative distribution* associated with X is $F_X(x) = \Pr(X \leq x)$.

The Finite Uniform Distribution

The finite uniform distribution is an equiprobable distribution. If $S = \{x_1, \ldots, x_n\}$, where $x_1 < x_2 < \ldots < x_n$, then:

$$f(x_k) = 1/n$$
$$F(x_k) = k/n$$

An Example With Dice

Suppose S is the sample space corresponding to tossing a pair of fair dice: $\{(i,j) \mid 1 \leq i, j \leq 6\}$.

Let X be the random variable that gives the sum:

$$\bullet \ X(i,j) = i+j$$

Can similarly compute the cumulative distribution:

$$F_X(2) = f_X(2) = 1/36$$

 $F_X(3) = f_X(2) + f_X(3) = 3/36$
:
 $F_X(12) = 1$

2

The Binomial Distribution

Suppose there is an experiment with probability p of success and thus probability q = 1 - p of failure.

• For example, consider tossing a biased coin, where Pr(h) = p. Getting "heads" is success, and getting tails is failure.

Suppose the experiment is repeated independently n times.

 \bullet For example, the coin is tossed n times.

This is called a sequence of Bernoulli trials.

Key features:

- Only two possibilities: success or failure.
- Probability of success does not change from trial to trial.
- The trials are independent.

3

What is the probability of k successes in n trials?

Suppose n = 5 and k = 3. How many sequences of 5 coin tosses have exactly three heads?

- hhhtt
- hhtht
- hhtth

C(5,3) such sequences!

What is the probability of each one?

$$p^3(1-p)^2$$

Therefore, probability is $C(5,3)p^3(1-p)^2$.

Let $B_{n,p}(k)$ be the probability of getting k successes in n Bernoulli trials with probability p of success.

$$B_{n,p}(k) = C(n,k)p^{k}(1-p)^{n-k}$$

Not surprisingly, $B_{n,p}$ is called the $Binomal\ Distribution$.

5

Deriving the Poisson

Poisson distribution = limit of binomial distributions.

Suppose at most one call arrives in each second.

- Since λ calls come each minute, expect about $\lambda/60$ each second.
- ullet The probability that k calls come is $B_{60,\lambda/60}(k)$

This model doesn't allow more than one call/second. What's so special about 60? Suppose we divide one minute into n time segments.

- Probability of getting a call in each segment is λ/n .
- \bullet Probability of getting k calls in a minute is

$$B_{n,\lambda/n}(k)$$

$$= C(n,k)(\lambda/n)^k (1 - \frac{\lambda}{n})^{n-k}$$

$$= C(n,k) \left(\frac{\lambda/n}{1-\frac{\lambda}{n}}\right)^k \left(1 - \frac{\lambda}{n}\right)^n$$

$$= \frac{\lambda^k}{k!} \frac{n!}{(n-k)!} \left(\frac{1}{n-\lambda}\right)^k \left(1 - \frac{\lambda}{n}\right)^n$$

Now let $n \to \infty$:

•
$$\lim_{n\to\infty} \left(1 - \frac{\lambda}{n}\right)^n = e^{-\lambda}$$

•
$$\lim_{n\to\infty} \frac{n!}{(n-k)!} \left(\frac{1}{n-\lambda}\right)^k = 1$$

Conclusion: $\lim_{n\to\infty} B_{n,\lambda/n}(k) = e^{-\lambda} \frac{\lambda^k}{k!}$

The Poisson Distribution

A large call center receives, on average, λ calls/minute.

• What is the probability that exactly *k* calls come during a given minute?

Understanding this probability is critical for staffing!

• Similar issues arise if a printer receives, on average λ jobs/minute, a site gets λ hits/minute, . . .

This is modelled well by the *Poisson distribution* with parameter λ :

$$f_{\lambda}(k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

- $f_{\lambda}(0) = e^{-\lambda}$
- $f_{\lambda}(1) = e^{-\lambda}\lambda$
- $f_{\lambda}(2) = e^{-\lambda} \lambda^2 / 2$

 $e^{-\lambda}$ is a normalization constant, since

$$1 + \lambda + \lambda^2/2 + \lambda^3/3! + \dots = e^{\lambda}$$

6

New Distributions from Old

If X and Y are random variables on a sample space S, so is X + Y, X + 2Y, XY, $\sin(X)$, etc.

For example,

- $\bullet (X + Y)(s) = X(s) + Y(s).$
- $\bullet \sin(X)(s) = \sin(X(s))$

Note $\sin(X)$ is a random variable: a function from the sample space to the reals.

7

Some Examples

Example 1: A fair die is rolled. Let X denote the number that shows up. What is the probability distribution of $Y = X^2$?

$$\begin{cases} s: Y(s) = k \} &= \{s: X^2(s) = k \} \\ &= \{s: X(s) = -\sqrt{k} \} \cup \{s: X(s) = \sqrt{k} \}. \end{cases}$$

Conclusion: $f_Y(k) = f_X(\sqrt{k}) + f_X(-\sqrt{k})$. So $f_Y(1) = f_Y(4) = f_Y(9) = \cdots f_Y(36) = 1/6$. $f_Y(k) = 0$ if $k \notin \{1, 4, 9, 16, 25, 36\}$.

Example 2: A coin is flipped. Let X be 1 if the coin shows H and -1 if T. Let $Y = X^2$.

• In this case $Y \equiv 1$, so Pr(Y = 1) = 1.

Example 3: If two dice are rolled, let X be the number that comes up on the first dice, and Y the number that comes up on the second.

• Formally, X((i,j)) = i, Y((i,j)) = j.

The random variable X+Y is the total number showing.

Example 4: Suppose we toss a biased coin n times (more generally, we perform n Bernoulli trials). Let X_k describe the outcome of the kth coin toss: $X_k = 1$ if the kth coin toss is heads, and 0 otherwise.

How do we formalize this?

• What's the sample space?

Notice that $\sum_{k=1}^{n} X_k$ describes the number of successes of n Bernoulli trials.

- If the probability of a single success is p, then $\sum_{k=1}^{n} X_k$ has distribution $B_{n,p}$
 - The binomial distribution is the sum of Bernoullis

10

Independent random variables

In a roll of two dice, let X and Y record the numbers on the first and second die respectively.

- What can you say about the events X = 3, Y = 2?
- What about X = i and Y = j?

Definition: The random variables X and Y are independent if for every x and y the events X = x and Y = y are independent.

Example: X and Y above are independent.

Definition: The random variables $X_1, X_2, ..., X_n$ are mutually independent if, for every $x_1, x_2, ..., x_n$

$$\Pr(X_1 = x_1 \cap ... \cap X_n = x_n) = \Pr(X_1 = x_1) ... \Pr(X_n = x_n)$$

Example: X_k , the success indicators in n Bernoulli trials, are independent.

Pairwise vs. mutual independence

Mutual independence implies pairwise independence; the converse may not be true:

Example 1: A ball is randomly drawn from an urn containing 4 balls: one blue, one red, one green and one multicolored (red + blue + green)

- Let X_1 , X_2 and X_3 denote the indicators of the events the ball has (some) blue, red and green respectively.
- $Pr(X_i = 1) = 1/2$, for i = 1, 2, 3

$$X_1$$
 and X_2 independent: $egin{array}{c|c} X_1=0 & X_1=1 \\ \hline X_2=0 & 1/4 & 1/4 \\ X_2=1 & 1/4 & 1/4 \\ \hline \end{array}$

Similarly, X_1 and X_3 are independent; so are X_2 and X_3 .

Are X_1 , X_2 and X_3 independent? No!

$$\Pr(X_1 = 1 \cap X_2 = 1 \cap X_3 = 1) = 1/4$$

 $\Pr(X_1 = 1) \Pr(X_2 = 1) \Pr(X_3 = 1) = 1/8.$

Example 2: Suppose X_1 and X_2 are bits (0 or 1) chosen uniformly at random; $X_3 = X_1 \oplus X_2$.

- X_1, X_2 are independent, as are X_1, X_3 and X_2, X_3
- But X₁, X₂, and X₃ are not mutually independent
 X₁ and X₂ together determine X₃!

The distribution of X + Y

Suppose X and Y are independent random variables whose range is included in $\{0, 1, ..., n\}$. For $k \in \{0, 1, ..., 2n\}$,

$$(X+Y=k)=\cup_{j=0}^k\left((X=j)\cap(Y=k-j)\right).$$

Note that some of the events might be empty

• E.g., X = k is bound to be empty if k > n.

This is a disjoint union so

$$\begin{array}{l} \Pr(X+Y=k)\\ = \; \Sigma_{j=0}^k \Pr(X=j\cap Y=k-j)\\ = \; \Sigma_{j=0}^k \Pr(X=j) \Pr(Y=k-j) \quad \text{[by independence]} \end{array}$$

13

Expected Value

Suppose we toss a biased coin, with Pr(h) = 2/3. If the coin lands heads, you get \$1; if the coin lands tails, you get \$3. What are your expected winnings?

- 2/3 of the time you get \$1; 1/3 of the time you get \$3
- $(2/3 \times 1) + (1/3 \times 3) = 5/3$

What's a good way to think about this? We have a random variable W (for winnings):

- W(h) = 1
- W(t) = 3

The expectation of W is

$$E(W) = \Pr(h)W(h) + \Pr(t)W(t)$$

= $\Pr(W = 1) \times 1 + \Pr(W = 3) \times 3$

More generally, the *expected value* of random variable X on sample space S is

$$E(X) = \Sigma_x x \Pr(X = x)$$

An equivalent definition:

$$E(X) = \sum_{s \in S} X(s) \Pr(s)$$

Example: The Sum of Binomials

Suppose X has distribution $B_{n,p}$, Y has distribution $B_{m,p}$, and X and Y are independent.

$$\begin{array}{ll} \Pr(X+Y=k) \\ &= \sum_{j=0}^k \Pr(X=j \cap Y=k-j) \qquad [\text{sum rule}] \\ &= \sum_{j=0}^k \Pr(X=j) \Pr(Y=k-j) \qquad [\text{independence}] \\ &= \sum_{j=0}^k \binom{n}{j} p^j (1-p)^{n-j} \binom{m}{k-j} p^{k-j} (1-p)^{m-k+j} \\ &= \sum_{j=0}^k \binom{n}{j} \binom{m}{k-j} p^k (1-p)^{n+m-k} \\ &= (\sum_{j=0}^k \binom{n}{j} \binom{m}{k-j}) p^k (1-p)^{n+m-k} \\ &= \binom{n+m}{k} p^k (1-p)^{n+m-k} \\ &= B_{n+m,p}(k) \end{array}$$

Thus, X + Y has distribution $B_{n+m,p}$.

An easier argument: Perform n+m Bernoulli trials. Let X be the number of successes in the first n and let Y be the number of successes in the last m. X has distribution $B_{n,p}$, Y has distribution $B_{m,p}$, X and Y are independent, and X+Y is the number of successes in all n+m trials, and so has distribution $B_{n+m,p}$.

14

Example: What is the expected count when two dice are rolled?

Let X be the count (the sum of the values on the two dice):

$$E(X) = \sum_{i=2}^{12} i \Pr(X = i)$$

$$= 2\frac{1}{36} + 3\frac{2}{36} + 4\frac{3}{36} + \dots + 7\frac{6}{36} + \dots + 12\frac{1}{36}$$

$$= \frac{252}{36}$$

$$= 7$$

Expectation of Binomials

What is $E(B_{n,p})$, the expectation for the binomial distribution $B_{n,p}$

• How many heads do you expect to get after n tosses of a biased coin with Pr(h) = p?

Method 1: Use the definition and crank it out:

$$E(B_{n,p}) = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k}$$

This looks awful, but it can be calculated ...

Method 2: Use Induction; break it up into what happens on the first toss and on the later tosses.

• On the first toss you get heads with probability p and tails with probability 1-p. On the last n-1 tosses, you expect $E(B_{n-1,p})$ heads. Thus, the expected number of heads is:

$$E(B_{n,p}) = p(1 + E(B_{n-1,p})) + (1 - p)(E(B_{n-1,p}))$$

= $p + E(B_{n-1,p})$
 $E(B_{1,p}) = p$

Now an easy induction shows that $E(B_{n,p}) = np$.

There's an even easier way . . .

17

Example 1: Back to the expected value of tossing two dice:

Let X_1 be the count on the first die, X_2 the count on the second die, and let X be the total count.

Notice that

$$E(X_1) = E(X_2) = (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5$$

$$E(X) = E(X_1 + X_2) = E(X_1) + E(X_2) = 3.5 + 3.5 = 7$$

Example 2: Back to the expected value of $B_{n,p}$.

Let X be the total number of successes and let X_k be the outcome of the kth experiment, k = 1, ..., n:

$$E(X_k) = p \cdot 1 + (1 - p) \cdot 0 = p$$

$$X = X_1 + \dots + X_n$$

Therefore

$$E(X) = E(X_1) + \dots + E(X_n) = np.$$

Expectation is Linear

Theorem: E(X + Y) = E(X) + E(Y)

Proof: Recall that

$$E(X) = \sum_{s \in S} \Pr(s) X(s)$$

Thus,

$$E(X + Y) = \sum_{s \in S} \Pr(s)(X + Y)(s)$$

= $\sum_{s \in S} \Pr(s)X(s) + \sum_{s \in S} \Pr(s)Y(s)$
= $E(X) + E(Y)$.

Theorem: E(aX) = aE(X)

Proof:

$$E(aX) = \sum_{s \in S} \Pr(s)(aX)(s) = a\sum_{s \in S} X(s) = aE(X).$$

18

Expectation of Poisson Distribution

Let X be Poisson with parameter λ : $f_X(k) = e^{-\lambda \frac{\lambda^k}{k!}}$ for $k \in \mathbb{N}$.

$$\begin{split} E(X) &= \Sigma_{k=0}^{\infty} k \cdot e^{-\lambda} \frac{\lambda^k}{k!} \\ &= \Sigma_{k=1}^{\infty} e^{-\lambda} \frac{\lambda^k}{(k-1)!} \\ &= \lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} \\ &= \lambda e^{-\lambda} \sum_{j=0}^{\infty} \frac{\lambda^j}{j!} \\ &= \lambda e^{-\lambda} e^{\lambda} \quad \text{[Taylor series!]} \\ &= \lambda \end{split}$$

Does this make sense?

• Recall that, for example, X models the number of incoming calls for a tech support center whose average rate per minute is λ .

Geometric Distribution

Consider a sequence of Bernoulli trials. Let X denote the number of the first successful trial.

• E.g., the first time you see heads

X has a geometric distribution.

$$f_X(k) = (1-p)^{k-1}p$$
 $k \in N^+$.

- ullet The probability of seeing heads for the first time on the kth toss is the probability of getting k-1 tails followed by heads
- This is also called a *negative binomial* distribution of order 1.
 - \circ The negative binomial of order n gives the probability that it will take k trials to have n successes