
Inclusion-Exclusion Rule

Remember the Sum Rule:

The Sum Rule: If there are n(A) ways to do A and,
distinct from them, n(B) ways to do B, then the number
of ways to do A or B is n(A) + n(B).
What if the ways of doing A and B aren’t distinct?

Example: If 112 students take CS280, 85 students take
CS220, and 45 students take both, how many take either
CS280 or CS220.

A = students taking CS280
B = students taking CS220

|A ∪B| = |A| + |B| − |A ∩B| = 112 + 85− 45 = 152

This is best seen using a Venn diagram:
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How many numbers ≤ 100 are multiples of either 2 or 5?

Let A = multiples of 2 ≤ 100
Let B = multiples of 5 ≤ 100

Then A ∩B = multiples of 10 ≤ 100

|A ∪B| = |A| + |B| − |A ∩B| = 50 + 20− 10 = 60.
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What happens with three sets?

|A ∪B ∪ C| =
|A| + |B| + |C| − |A ∩B| − |A ∩ C| − |B ∩ C|

+|A ∩B ∩ C|
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Example: If there are 300 engineering majors, 112 take
CS280, 85 takes CS 220, 95 take AEP 356, 45 take both
CS280 and CS 220, 30 take both CS 280 and AEP 356,
25 take both CS 220 and AEP 356, and 5 take all 3, how
many don’t take any of these 3 courses?

A = students taking CS 280
B = students taking CS 220
C = students taking AEP 356

|A ∪B ∪ C|
= |A| + |B| + |C| − |A ∩B| − |B ∩ C| − |A ∩ C|

+|A ∩B ∩ C|
= 112 + 85 + 95− 45− 30− 25 + 5
= 197

We are interested in A ∪B ∪ C = 300− 197 = 103.
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The General Rule

More generally,

| ∪n
k=1 Ak| =

n∑
k=1

∑
{I|I⊂{1,...,n}, |I|=k}

(−1)k−1| ∩i∈I Ai|

Why is this true? Suppose a ∈ ∪n
k=1Ak, and is in exactly

m sets. a gets counted once on the LHS. How many times
does it get counted on the RHS?

• a appears in m sets (1-way intersection)

• a appears in C(m, 2) 2-way intersections

• a appears in C(m, 3) 3-way intersections

• . . .

Thus, on the RHS, a gets counted
m∑

k=1
(−1)k−1C(m, k) times.

By the binomial theorem:

0 = (−1 + 1)m = ∑m
k=0(−1)k1m−kC(m, k)

= 1 + ∑m
k=1(−1)kC(m, k)

Thus,
m∑

k=1
(−1)k−1C(m, k) = 1.

Each element in ∪k
i=1Ai gets counted once on both sides.
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A Hard Example

Suppose m ≥ 10. How many m-digit numbers have each
of the digits 0–9 at least once? (View 00305 as a 5-digit
number.)

We need a systematic way of tackling this.

Let Aj be the set of m-digit numbers that have at least
one occurrence of j, for j = 0, . . . , 9.

We are interested in |A0 ∩ . . . ∩ A9|.
The inclusion-exclusion rule applies to unions. Can we
use it?

A0 ∩ . . . ∩ A9 = A0 ∪ . . . ∪ A9

|Ai| = 9m

|Ai ∩ Aj| = 8m

. . .

| ∪9
i=0 Ai| = 10× 9m − C(10, 2)× 8m + · · ·

= ∑9
k=1(−1)k−1C(10, k)× (10− k)m

Thus,

| ∩9
i=0 Ai| = 10m − ∑9

k=1(−1)k−1C(10, k)× (10− k)m

= ∑9
k=0(−1)kC(10, k)(10− k)m
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The Pigeonhole Principle

The Pigeonhole Principle: If n + 1 pigeons are put
into n holes, at least two pigeons must be in the same
hole.

This seems obvious. How can it be used in combinatorial
anlysis?

Q1: If you have only blue socks and brown socks in your
drawer, how many do you have to pull out before you’re
sure to have a matching pair.

A: The socks are the pigeons and the holes are the colors.
There are two holes. With three pigeons, there have to
be at least two in one hole.

• What happens if we also have black socks?
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Q2: Bob picks 10 numbers between 1 and 40. Alice wins
if she can find two different sets of three of these numbers
that have the same sum. Who wins?

A: The holes are the possible sums. The smallest sum is
6 (1+2+3), the largest is 117 (38+39+40). The pigeons
are the possible ways for Alice to choose 3 numbers out
of the 10 chosen by Bob.10

3

 =
10× 9× 8

3× 2× 1
= 120.

There’s always a way for Alice to win!
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Probability

Life is full of uncertainty.
Probability is the best way we currently have to quantify
it.

Applications of probability arise everywhere:

• Should you guess in a multiple-choice test with five
choices?

◦ What if you’re not penalized for guessing?

◦ What if you’re penalized 1/4 for every wrong an-
swer?

◦ What if you can eliminate two of the five possibil-
ities?
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• Suppose that an AIDS test guarantees 99% accuracy:

◦ of every 100 people who have AIDS, the test re-
turns positive 99 times (very few false negative);

◦ of every 100 people who don’t have AIDS, the test
returns negative 99 times (very few false positives)

Suppose you test positive. How likely are you to have
AIDS?

◦ Hint: the probability is not .99

• How do you compute the average-case running time
of an algorithm?

• Is it worth buying a $1 lottery ticket?

◦ Probability isn’t enough to answer this question

(I think) everybody ought to know something about prob-
ability.
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Interpreting Probability

Probability can be a subtle.

The first (philosophical) question is “What does proba-
bility mean?”

• What does it mean to say that “The probability that
the coin landed (will land) heads is 1/2”?

Two standard interpretations:

• Probability is subjective: This is a subjective state-
ment describing an individual’s feeling about the coin
landing heads

◦ This feeling can be quantified in terms of betting
behavior

• Probability is an objective statement about frequency

Both interpretations lead to the same mathematical no-
tion.
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Formalizing Probability

What do we assign probability to?
Intuitively, we assign them to possible events (things that
might happen, outcomes of an experiment)

Formally, we take a sample space to be a set.

• Intuitively, the sample space is the set of possible out-
comes, or possible ways the world could be.

An event is a subset of a sample space.

We assign probability to events: that is, to subsets of a
sample space.

Sometimes the hardest thing to do in a problem is to
decide what the sample space should be.

• There’s often more than one choice

• A good thing to do is to try to choose the sample
space so that all outcomes (i.e., elements) are equally
likely

◦ This is not always possible or reasonable
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Choosing the Sample Space

Example 1: We toss a coin. What’s the sample space?

• Most obvious choice: {heads, tails}
• Should we bother to model the possibility that the

coin lands on edge?

• What about the possibility that somebody snatches
the coin before it lands?

• What if the coin is biased?

Example 2: We toss a die. What’s the sample space?

Example 3: Two distinguishable dice are tossed to-
gether. What’s the sample space?

• (1,1), (1,2), (1,3), . . . , (6,1), (6,2), . . . , (6,6)

What if the dice are indistinguishable?

Example 4: You’re a doctor examining a seriously ill
patient, trying to determine the probability that he has
cancer. What’s the sample space?

Example 5: You’re an insurance company trying to
insure a nuclear power plant. What’s the sample space?
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Probability Measures

A probability measure assigns a real number between 0
and 1 to every subset of (event in) a sample space.

• Intuitively, the number measures how likely that event
is.

• Probability 1 says it’s certain to happen; probability
0 says it’s certain not to happen

• Probability acts like a weight or measure. The prob-
ability of separate things (i.e., disjoint sets) adds up.

Formally, a probability measure Pr on S is a function
mapping subsets of S to real numbers such that:

1. For all A ⊆ S, we have 0 ≤ Pr(A) ≤ 1

2. Pr(∅) = 0; Pr(S) = 1

3. If A and B are disjoint subsets of S (i.e., A∩B = ∅),
then Pr(A ∪B) = Pr(A) + Pr(B).

It follows by induction that if A1, . . . , Ak are pairwise
disjoint, then

Pr(∪k
i Ai) = Σk

i Pr(Ai).

• This is called finite additivity; it’s actually more stan-
dard to assume a countable version of this, called
countable additivity
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In particular, this means that if A = {e1, . . . , ek}, then

Pr(A) =
k∑

i=1
Pr(ei).

In finite spaces, the probability of a set is determined by
the probability of its elements.
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Equiprobable Measures

Suppose S has n elements, and we want Pr to make each
element equally likely.

• Then each element gets probability 1/n

• Pr(A) = |A|/n
In this case, Pr is called an equiprobable measure.

Examples
Example 1: In the coin example, if you think the coin
is fair, and the only outcomes are heads and tails, then
we can take S = {heads,tails}, and
Pr(heads) = Pr(tails) = 1/2.

Example 2: In the two-dice example where the dice are
distinguishable, if you think both dice are fair, then we
can take Pr((i, j)) = 1/36.

• Should it make a difference if the dice are indistin-
guishable?
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Equiprobable measures on infinite sets

Defining an equiprobable measure on an infinite set can
be tricky.

Theorem: There is no equiprobable measure on the
positive integers.

Proof: By contradiction. Suppose Pr is an equiprobable
measure on the positive integers, and Pr(1) = ε > 0.

There must be some N such that ε > 1/N .
Since Pr(1) = · · · = Pr(N) = ε, we have

Pr({1, . . . , N}) = Nε > 1 — a contradiction

But if Pr(1) = 0, then Pr(S) = Pr(1) + Pr(2) + · · · = 0.
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Some basic results

How are the probability of E and E related?

• How does the probability that the dice lands either 2
or 4 (i.e., E = {2, 4}) compare to the probability that
the dice lands 1, 3, 5, or 6 (E = {1, 3, 5, 6})

Theorem 1: Pr(E) = 1− Pr(E).

Proof: E and E are disjoint, so that

Pr(E ∪ E) = Pr(E) + Pr(E).

But E ∪ E = S, so Pr(E ∪ E) = 1.
Thus Pr(E) + Pr(E) = 1, so

Pr(E) = 1− Pr(E).
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Theorem 2: Pr(A∪B) = Pr(A)+Pr(B)−Pr(A∩B).

A = (A−B) ∪ (A ∩B)
B = (B − A) ∪ (A ∩B)
A ∪B = (A−B) ∪ (B − A) ∪ (A ∩B)

So

Pr(A) = Pr(A−B) + Pr(A ∩B)
Pr(B) = Pr(B − A) + Pr(A ∩B)
Pr(A ∪B) = Pr(A−B) + Pr(B − A) + Pr(A ∩B)

The result now follows.

Remember the Inclusion-Exclusion Rule?

|A ∪B| = |A| + |B| − |A ∩B|

This follows easily from Theorem 2, if we take Pr to be
an equiprobable measure. We can also generalize to arbi-
trary unions.
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Disclaimer

• Probability is a well defined mathematical theory.

• Applications of probability theory to “real world” prob-
lems is not.

• Choosing the sample space, the events and the prob-
ability function requires a “leap of faith”.

• We cannot prove that we chose the right model but
we can argue for that.

• Some examples are easy some are not:

◦ Flipping a coin or rolling a die.

◦ Playing a lottery game.

◦ Guessing in a multiple choice test.

◦ Determining whether or not the patient has AIDS
based on a test.

◦ Does the patient have cancer?
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Conditional Probability

One of the most important features of probability is that
there is a natural way to update it.

Example: Bob draws a card from a 52-card deck. Ini-
tially, Alice considers all cards equally likely, so her prob-
ability that the ace of spades was drawn is 1/52. Her
probability that the card drawn was a spade is 1/4.

Then she sees that the card is black. What should her
probability now be that

• the card is the ace of spades?

• the card is a spade?

A reasonable approach:

• Start with the original sample space

• Eliminate all outcomes (elements) that you now con-
sider impossible, based on the observation (i.e., assign
them probability 0).

• Keep the relative probability of everything else the
same.

◦ Renormalize to get the probabilities to sum to 1.
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What should the probability of B be, given that you’ve
observed A? According to this recipe, it’s

Pr(B | A) =
Pr(A ∩B)

Pr(A)

Pr(A♠ | black) = (1/52)/(1/2) = 1/26
Pr(spade | black) = (1/4)/(1/2) = 1/2.

A subtlety:

• What if Alice doesn’t completely trust Bob? How do
you take this into account? Two approaches:

(1) Enlarge sample space to allow more observations.

(2) Jeffrey’s rule:

Pr(A♠ | black) · Pr(Bob telling the truth)+
Pr(A♠ | red) · Pr(Bob lying).
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Independence

Intuitively, events A and B are independent if they have
no effect on each other.

This means that observing A should have no effect on
the likelihood we ascribe to B, and similarly, observing
B should have no effect on the likelihood we ascribe to
A.

Thus, if Pr(A) 6= 0 and Pr(B) 6= 0 and A is independent
of B, we would expect

Pr(B|A) = Pr(B) and Pr(A|B) = Pr(A).

Interestingly, one implies the other.

Pr(B|A) = Pr(B) iff Pr(A ∩B)/ Pr(A) = Pr(B) iff

Pr(A ∩B) = Pr(A)× Pr(B).

Formally, we say A and B are (probablistically) inde-
pendent if

Pr(A ∩B) = Pr(A)× Pr(B).

This definition makes sense even if Pr(A) = 0 or Pr(B) =
0.
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Example

Alice has two coins, a fair one f and a loaded one l.

• l’s probability of landing H is p > 1/2.

Alice picks f and flips it twice.

• What is the sample space?

Ω = {(H, H), (H, T ), (T, H), (T, T )}.

• What is Pr?

• By symmetry this should be an equiprobable space.

Let H1 = {(H, H), (H, T )} and let H2 = {(H, H), (T, H)}.
H1 and H2 are independent:

• H1 = {(H, H), (H, T )} ⇒ Pr(H1) = 2/4 = 1/2.

• Similarly, P (H2) = 1/2.

• H1 ∩H2 = {(H, H)} ⇒ Pr(H1 ∩H2) = 1/4.

• So, Pr(H1 ∩H2) = Pr(H1) · Pr(H2).
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Alice next picks l and flips it twice.

• The sample space is the same as before:

Ω = {(H, H), (H, T ), (T, H), (T, T )}.

• We now define Pr by assuming the flips are indepen-
dent:

◦ Pr{(H, H)} = Pr(H1 ∩H2) := p2

◦ Pr{(H, T )} = Pr(H1 ∩ H̄2) := p(1− p)

◦ Pr{(T, H)} = Pr(H̄1 ∩H2) := (1− p)p

◦ Pr{(T, T )} = Pr(H̄1 ∩ H̄2) := (1− p)2.

• H1 and H2 are now independent by construction:

Pr(H1) = Pr{(H, H), (H, T )} =
= p2 + p(1− p) = p[p + (1− p)] = p.

Similarly, Pr(H2) = Pr{(H, H), (T, H)} = p
Pr(H1 ∩H2) = Pr(H, H) = p2.

• For either coin, the two flips are independent.

What if Alice randomly picks a coin and flips it twice?

• What is the sample space?

Ω = {(f, (H, H)), (f, (H, T )), (f, (T, H)), (f, (T, T )),
(l, (H, H)), (l, (H, T )), (l, (T, H)), (l, (T, T ))}.
The sample space has to specify which coin is picked!
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• How do we construct Pr?

• E.g.: Pr(f, H,H) should be probability of getting the
fair times the probability of getting heads with the fair
coin: 1/2× 1/4

• Follows from the following general result:

Pr(A ∩B) = Pr(B|A) Pr(A)

• So with F , L denoting the events f (respectively, l)
was picked,

Pr{(f, (H, H))} = Pr(F ∩ (H1 ∩H2))
= Pr(H1 ∩H2|F ) Pr(F )
= 1/2 · 1/2 · 1/2.

Analogously, we have for example

Pr{(l, (H, T ))} = p(1− p) · 1/2.

26



Are H1 and H2 independent now?

Claim. Pr(A) = Pr(A|E) Pr(E) + Pr(A|Ē) Pr(Ē)

Proof. A = (A ∩ E) ∪ (A ∩ Ē), so

Pr(A) = Pr(A ∩ E) + Pr(A ∩ Ē).

Pr(H1) = Pr(H1|F ) Pr(F )+Pr(H1|L) Pr(L) = p/2+1/4.

Similarly, Pr(H2) = p/2 + 1/4.

However,

Pr(H1 ∩H2)
= Pr(H1 ∩H2|F ) Pr(F ) + Pr(H1 ∩H2|L) Pr(L)
= p2/2 + 1/4 · 1/2

6= (p/2 + 1/4)2

= Pr(H1) · Pr(H2).

So H1 and H2 are dependent events.

27


