
Combinatorics

Problem: How to count without counting.

• How do you figure out how many things there are with
a certain property without actually enumerating all of
them.

Sometimes this requires a lot of cleverness and deep math-
ematical insights.

But there are some standard techniques.

• That’s what we’ll be studying.
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Sum and Product Rules

Example 1: In New Hampshire, license plates consisted
of two letters followed by 3 digits. How many possible
license plates are there?

Answer: 26 choices for the first letter, 26 for the second,
10 choices for the first number, the second number, and
the third number:

262 × 103 = 676, 000

Example 2: A traveling salesman wants to do a tour of
all 50 state capitals. How many ways can he do this?

Answer: 50 choices for the first place to visit, 49 for the
second, . . . : 50! altogether.

Chapter 4 gives general techniques for solving counting
problems like this. Two of the most important are:
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The Sum Rule: If there are n(A) ways to do A and,
distinct from them, n(B) ways to do B, then the number
of ways to do A or B is n(A) + n(B).

• This rule generalizes: there are n(A) + n(B) + n(C)
ways to do A or B or C

• In Section 4.8, we’ll see what happens if the ways of
doing A and B aren’t distinct.

The Product Rule: If there are n(A) ways to do A
and n(B) ways to do B, then the number of ways to do
A and B is n(A) × n(B). This is true if the number of
ways of doing A and B are independent; the number of
choices for doing B is the same regardless of which choice
you made for A.

• Again, this generalizes. There are n(A)×n(B)×n(C)
ways to do A and B and C
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Some Subtler Examples

Example 3: If there are n Senators on a committee, in
how many ways can a subcommittee be formed?

Two approaches:

1. Let N1 be the number of subcommittees with 1 sen-
ator (n), N2 the number of subcommittees with 2
senator (n(n− 1)/2), . . .

According to the sum rule:

N = N1 + N2 + · · · + Nn

• It turns out that Nk = n!
k!(n−k)! (n choose k); this

is discussed in Section 4.4

• A subtlety: What about N0? Do we allow sub-
committees of size 0? How about size n?

◦ The problem is somewhat ambiguous.

If we allow subcommittees of size 0 and n, then
there are 2n subcommittees altogether.

◦ This is the same as the number of subsets of the
set of n Senators: there is a 1-1 correspondence
between subsets and subcommittees.

2. Simpler method: Use the product rule!
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• Each senator is either in the subcommittee or out
of it: 2 possibilities for each senator:

◦ 2× 2× · · · × 2 = 2n choices altogether

General moral: In many combinatorial problems, there’s
more than one way to analyze the problem.
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How many ways can the full committee be split into two
sides on an issue?

This question is also ambiguous.

• If we care about which way each Senator voted, then
the answer is again 2n: Each subcommittee defines
a split + vote (those in the subcommittee vote Yes,
those out vote No); and each split + vote defines de-
fines a subcommittee.

• If we don’t care about which way each Senator voted,
the answer is 2n/2 = 2n−1.

◦ This is an instance of the Division Rule.
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Coping with Ambiguity

If you think a problem is ambiguous:

1. Explain why

2. Choose one way of resolving the ambiguity

3. Solve the problem according to your interpretation

• Make sure that your interpretation doesn’t render
the problem totally trivial
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More Examples

Example 4: How many legal configurations are there
in Towers of Hanoi with n rings?

Answer: The product rule again: Each ring gets to
“vote” for which pole it’s on.

• Once you’ve decided which rings are on each pole,
their order is determined.

• The total number of configurations is 3n

Example 5: How many distinguishable ways can the
letters of “computer” be arranged? How about “dis-
crete”?

For computer, it’s 8!:

• 8 choices for the first letter, for the second, . . .

Is it 8! for discrete? Not quite.

• There are two e’s

Suppose we called them e1, e2:

• There are two “versions” of each arrangement, de-
pending on which e comes first: discre1te2 is the same
as discre2te1.

• Thus, the right answer is 8!/2!
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Division Rule: If there is a k-to-1 correspondence be-
tween of objects of type A with objects of type B, and
there are n(A) objects of type A, then there are n(A)/k
objects of type B.

A k-to-1 correspondence is an onto mapping in which
every B object is the image of exactly k A objects.
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Permutations

A permutation of n things taken r at a time, written
P (n, r), is an arrangement in a row of r things, taken
from a set of n distinct things. Order matters.

Example 6: How many permutations are there of 5
things taken 3 at a time?

Answer: 5 choices for the first thing, 4 for the second,
3 for the third: 5× 4× 3 = 60.

• If the 5 things are a, b, c, d, e, some possible permuta-
tions are:

abc abd abe acb acd ace
adb adc ade aeb aec aed
. . .

In general

P (n, r) =
n!

(n− r)!
= n(n− 1) · · · (n− r + 1)
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Combinations

A combination of n things taken r at a time, written
C(n, r) or

(
n
r

)
(“n choose r”) is any subset of r things

from n things. Order makes no difference.

Example 7: How many ways are there of choosing 3
things from 5?

Answer: If order mattered, then it would be 5× 4× 3.
Since order doesn’t matter,

abc, acb, bac, bca, cab, cba

are all the same.

• For way of choosing three elements, there are 3! = 6
ways of ordering them.

Therefore, the right answer is (5× 4× 3)/3! = 10:

abc abd abe acd ace
ade bcd bce bde cde

In general

C(n, r) =
n!

(n− r)!r!
= n(n− 1) · · · (n− r + 1)/r!
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More Examples

Example 8: How many full houses are there in poker?

• A full house has 5 cards, 3 of one kind and 2 of an-
other.

• E.g.: 3 5’s and 2 K’s.

Answer: You need to find a systematic way of counting:

• Choose the denomination for which you have three of
a kind: 13 choices.

• Choose the three: C(4, 3) = 4 choices

• Choose the denomination for which you have two of
a kind: 12 choices

• Choose the two: C(4, 2) = 6 choices.

Altogether, there are:

13× 4× 12× 6 = 3744 choices
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0!

It’s useful to define 0! = 1.

Why?

1. Then we can inductively define

(n + 1)! = (n + 1)n!,

and this definition works even taking 0 as the base
case instead of 1.

2. A better reason: Things work out right for P (n, 0)
and C(n, 0)!

How many permutations of n things from n are there?

P (n, n) =
n!

(n− n)!
=

n!

0!
= n!

How many ways are there of choosing n out of n?
0 out of n?

nn
 =

n!

n!0!
= 1

n0
 =

n!

0!n!
= 1
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More Questions

Q: How many ways are there of choosing k things from
{1, . . . , n} if 1 and 2 can’t both be chosen? (Suppose
n, k ≥ 2.)

A: First find all the ways of choosing k things from n—
C(n, k). Then subtract the number of those ways in
which both 1 and 2 are chosen:

• This amounts to choosing k−2 things from {3, . . . , n}:
C(n− 2, k − 2).

Thus, the answer is

C(n, k)− C(n− 2, k − 2)

Q: What if order matters?

A: Have to compute how many ways there are of picking
k things, two of which are 1 and 2.

P (n, k)− k(k − 1)P (n− 2, k − 2)
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Q: How many ways are there to distribute four distinct
balls evenly between two distinct boxes (two balls go in
each box)?

A: All you need to decide is which balls go in the first
box.

C(4, 2) = 6

Q: What if the boxes are indistinguishable?

A: C(4, 2)/2 = 3.
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Combinatorial Identities

There all lots of identities that you can form using C(n, k).
They seem mysterious at first, but there’s usually a good
reason for them.

Theorem 1: If 0 ≤ k ≤ n, then

C(n, k) = C(n, n− k).

Proof:

C(n, k) =
n!

k!(n− k)!
=

n!

(n− k)!(n− (n− k))!
= C(n, n−k)

Q: Why should choosing k things out of n be the same
as choosing n− k things out of n?

A: There’s a 1-1 correspondence. For every way of choos-
ing k things out of n, look at the things not chosen: that’s
a way of choosing n− k things out of n.

This is a better way of thinking about Theorem 1 than
the combinatorial proof.
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Theorem 2: If 0 < k < n thennk
 =

n− 1

k

 +

n− 1

k − 1



Proof 1: (Combinatorial) Suppose we want to choose k
objects out of {1, . . . , n}. Either we choose the last one
(n) or we don’t.

1. How many ways are there of choosing k without choos-
ing the last one? C(n− 1, k).

2. How many ways are there of choosing k including n?
This means choosing k − 1 out of {1, . . . , n − 1}:
C(n− 1, k − 1).

Proof 2: Algebraic . . .

Note: If we define C(n, k) = 0 for k > n and k < 0,
Theorems 1 and 2 still hold.
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