
Modular Arithmetic

Remember: a ≡ b (mod m) means a and b have the same
remainder when divided by m.

• Equivalently: a ≡ b (mod m) iff m | (a − b)

• a is congruent to b mod m

Theorem 7: If a1 ≡ a2 (mod m) and b1 ≡ b2 (mod m),
then

(a) (a1 + b1) ≡ (a2 + b2) (mod m)

(b) a1b1 ≡ a2b2 (mod m)

Proof: Suppose

• a1 = c1m + r, a2 = c2m + r

• b1 = d1m + r′, b2 = d2m + r′

So

• a1 + b1 = (c1 + d1)m + (r + r′)

• a2 + b2 = (c2 + d2)m + (r + r′)

m | ((a1 + b1) − (a2 + b2) = ((c1 + d1) − (c2 + d2))m

• Conclusion: a1 + b1 ≡ a2 + b2 (mod m).

1

For multiplication:

• a1b1 = (c1d1m + r′c1 + rd1)m + rr′

• a2b2 = (c2d2m + r′c2 + rd2)m + rr′

m | (a1b1 − a2b2)

• Conclusion: a1b1 ≡ a2b2 (mod m).

Bottom line: addition and multiplication carry over to
the modular world.

Modular arithmetic has lots of applications.

• Here are four . . .

2

Hashing

Problem: How can we efficiently store, retrieve, and
delete records from a large database?

• For example, students records.

Assume, each record has a unique key

• E.g. student ID, Social Security #

Do we keep an array sorted by the key?

• Easy retrieval but difficult insertion and deletion.

How about a table with an entry for every possible key?

• Often infeasible, almost always wasteful.

• There are 1010 possible social security numbers.

Solution: store the records in an array of size N , where N
is somewhat bigger than the expected number of records.

• Store record with id k in location h(k)

◦ h is the hash function

◦ Basic hash function: h(k) := k (mod N).

• A collision occurs when h(k1) = h(k2) and k1 6= k2.

◦ Choose N sufficiently large to minimize collisions

• Lots of techniques for dealing with collisions

3

Pseudorandom Sequences

For randomized algorithms we need a random number
generator.

• Most languages provide you with a function “rand”.

• There is nothing random about rand!

◦ It creates an apparently random sequence deter-
ministically

◦ These are called pseudorandom sequences

A standard technique for creating psuedorandom sequences:
the linear congruential method.

• Choose a modulus m ∈ N+,

• a multiplier a ∈ {2, 3, . . . , m − 1}, and

• an increment c ∈ Zm = {0, 1, . . . , m − 1}.

• Choose a seed x0 ∈ Zm

◦ Typically the time on some internal clock is used

• Compute xn+1 = axn + c (mod m).

Warning: a poorly implemented rand, such as in C, can
wreak havoc on Monte Carlo simulations.

4

ISBN Numbers

Since 1968, most published books have been assigned a
10-digit ISBN numbers:

• identifies country of publication, publisher, and book
itself

• The ISBN number for DAM3 is 1-56881-166-7

All the information is encoded in the first 9 digits

• The 10th digit is used as a parity check

• If the digits are a1, . . . , a10, then we must have

a1 + 2a2 + · · · + 9a9 + 10a10 ≡ 0 (mod 11).

• For DAM3, get

1 + 2 × 5 + 3 × 6 + 4 × 8 + 5 × 8 + 6 × 1
+7 × 1 + 8 × 6 + 9 × 6 + 10 × 7 = 286 ≡ 0 (mod 11)

• This test always detects errors in single digits and
transposition errors

◦ Two arbitrary errors may cancel out

Similar parity checks are used in universal product codes
(UPC codes/bar codes) that appear on almost all items

• The numbers are encoded by thicknesses of bars, to
make them machine readable

5

Casting out 9s

Notice that a number is equivalent to the sum of its dig-
its mod 9. This can be used as a way of checking your
addition. [More in class]

6

Linear Congruences

The equation ax = b for a, b ∈ R is uniquely solvable if
a 6= 0: x = ba−1.

• Can we also (uniquely) solve ax ≡ b (mod m)?

• If x0 is a solution, then so is x0 + km ∀k ∈ Z

◦ . . . since km ≡ 0 (mod m).

So, uniqueness can only be mod m.

But even mod m, there can be more than one solution:

• Consider 2x ≡ 2 (mod 4)

• Clearly x ≡ 1 (mod 4) is one solution

• But so is x ≡ 3 (mod 4)!

Theorem 8: If gcd(a,m) = 1 then there is a unique
solution (mod m) to ax ≡ b (mod m).

Proof: Suppose r, s ∈ Z both solve the equation:

• then ar ≡ as (mod m), so m | a(r − s)

• Since gcd(a,m) = 1, by Corollary 3, m | (r − s)

• But that means r ≡ s (mod m)

So if there’s a solution at all, then it’s unique mod m.

7

Solving Linear Congruences

But why is there a solution to ax ≡ b (mod m)?

Key idea: find a−1 mod m; then x ≡ ba−1 (mod m)

• By Corollary 2, since gcd(a,m) = 1, there exist s, t
such that

as + mt = 1

• So as ≡ 1 (mod m)

• That means s ≡ a−1 (mod m)

• x ≡ bs (mod m)

8

The Chinese Remainder Theorem

Suppose we want to solve a system of linear congruences:

Example: Find x such that

x ≡ 2 (mod 3)
x ≡ 3 (mod 5)
x ≡ 2 (mod 7)

Can we solve for x? Is the answer unique?

Definition: m1, . . . ,mn are pairwise relatively prime

if each pair mi, mj is relatively prime.

Theorem 9 (Chinese Remainder Theorem): Let
m1, . . . , mn ∈ N+ be pairwise relatively prime. The sys-
tem

x ≡ ai (mod mi) i = 1, 2 . . . n (1)

has a unique solution modulo M = Πn
1mi.

• The best we can hope for is uniqueness modulo M :

◦ If x is a solution then so is x+kM for any k ∈ Z.

Proof: First I show that there is a solution; then I’ll
show it’s unique.

9

CRT: Existence

Key idea for existence:
Suppose we can find y1, . . . , yn such that

yi ≡ ai (mod mi)
yi ≡ 0 (mod mj) if j 6= i.

Now consider y := Σn
j=1 yj.

Σn
j=1 yj ≡ ai (mod mi)

• Since yi = ai mod mi and yj = 0 mod mj if j 6= i.

So y is a solution!

• Now we need to find y1, . . . , yn.

• Let Mi = M/mi = m1×· · ·×mi−1×mi+1×· · ·×mn.

• gcd(Mi,mi) = 1, since mj’s pairwise relatively prime

◦ No common prime factors among any of the mj’s

Choose y′i such that (Mi)y
′
i ≡ ai (mod mi)

◦ Can do that by Theorem 8, since gcd(Mi, mi) = 1.

Let yi = y′iMi.

◦ yi is a multiple of mj if j 6= i, so yi ≡ 0 (mod mj)

◦ yi = y′iMi ≡ ai (mod mi) by construction.

So y1 + · · · + yn is a solution to the system, mod M .

10

CRT: Example

Find x such that

x ≡ 2 (mod 3)
x ≡ 3 (mod 5)
x ≡ 2 (mod 7)

Find y1 such that y1 ≡ 2 (mod 3), y1 ≡ 0 (mod 5/7):

• y1 has the form y′1 × 5 × 7

• 35y′1 ≡ 2 (mod 3)

• y′1 = 1, so y1 = 35.

Find y2 such that y2 ≡ 3 (mod 5), y2 ≡ 0 (mod 3/7):

• y2 has the form y′2 × 3 × 7

• 21y′2 ≡ 3 (mod 5)

• y′2 = 3, so y2 = 63.

Find y3 such that y3 ≡ 2 (mod 7), y3 ≡ 0 (mod 3/5):

• y3 has the form y′3 × 3 × 5

• 15y′3 ≡ 2 (mod 7)

• y′3 = 2, so y3 = 30.

Solution is x = y1 + y2 + y3 = 35 + 63 + 30 = 128

11

CRT: Uniqueness

What if x, y are both solutions to the equations?

• x ≡ y (mod mi) ⇒ mi | (x − y), for i = 1, . . . , n

• Claim: M = m1 · · ·mn | (x − y)

• so x ≡ y (mod M)

Theorem 10: If m1, . . . ,mn are pairwise relatively
prime and mi | b for i = 1, . . . , n, then m1 · · ·mn | b.

Proof: By induction on n.

• For n = 1 the statement is trivial.

Suppose statement holds for n = N .

• Suppose m1, . . . , mN+1 relatively prime, mi | b for
i = 1, . . . , N + 1.

• by IH, m1 · · ·mN | b ⇒ b = m1 · · ·mNc for some c

• By assumption, mN+1 | b, so m | (m1 · · ·mN)c

• gcd(m1 · · ·mN ,mN+1) = 1 (since mi’s pairwise rela-
tively prime ⇒ no common factors)

• by Corollary 3, mN+1 | c

• so c = dmN+1, b = m1 · · ·mNmN+1d

• so m1 · · ·mN+1 | b.

12

An Application of CRT: Computer
Arithmetic with Large Integers

Suppose we want to perform arithmetic operations (ad-
dition, multiplication) with extremely large integers

• too large to be represented easily in a computer

Idea:

• Step 1: Find suitable moduli m1, . . . , mn so that mi’s
are relatively prime and m1 · · ·mn is bigger than the
answer.

• Step 2: Perform all the operations mod mj, j =
1, . . . , n.

◦ This means we’re working with much smaller num-
bers (no bigger than mj)

◦ The operations are much faster

◦ Can do this in parallel

• Suppose the answer mod mj is aj:

◦ Use CRT to find x such that x ≡ aj (mod mj)

◦ The unique x such that 0 < x < m1 · · ·mn is the
answer to the original problem.

13

Example: The following are pairwise relatively prime:

235 − 1, 234 − 1, 233 − 1, 229 − 1, 223 − 1

We can add and multiply positive integers up to

(235 − 1)(234 − 1)(233 − 1)(229 − 1)(223 − 1) > 2163.

14

Fermat’s Little Theorem

Theorem 11 (Fermat’s Little Theorem):

(a) If p prime and gcd(p, a) = 1, then ap−1 ≡ 1 (mod p).

(b) For all a ∈ Z, ap ≡ a (mod p).

Proof. Let
A = {1, 2, . . . , p − 1}
B = {1a mod p, 2a mod p, . . . , (p − 1)a mod p}

Claim: A = B.

• 0 /∈ B, since p 6 | ja, so B ⊂ A.

• If i 6= j, then ia mod p 6= ja mod p

◦ since p 6 | (j − i)a

Thus |A| = p − 1, so A = B.

Therefore,

Πi∈A i ≡ Πi∈B i (mod p)
⇒ (p − 1)! ≡ a(2a) · · · (p − 1)a = (p − 1)! ap−1 (mod p)
⇒ p | (ap−1 − 1)(p − 1)!
⇒ p | (ap−1 − 1) [since gcd(p, (p − 1)!) = 1]
⇒ ap−1 ≡ 1 (mod p)

It follows that ap ≡ a (mod p)

• This is true even if gcd(p, a) 6= 1; i.e., if p | a

Why is this being taught in a CS course?

15

Private Key Cryptography

Alice (aka A) wants to send an encrypted message to Bob
(aka B).

• A and B might share a private key known only to
them.

• The same key serves for encryption and decryption.

• Example: Caesar’s cipher f(m) = m + 3 mod 26
(shift each letter by three)

◦ WKH EXWOHU GLG LW

◦ THE BUTLER DID IT

This particular cryptosystem is very easy to solve

• Idea: look for common letters (E, A, T, S)

16

One Time Pads

Some private key systems are completely immune to crypt-
analysis:

• A and B share the only two copies of a long list of
random integers si for i = 1, . . . , N .

• A sends B the message {mi}
n
i=1 encrypted as:

ci = (mi + si) mod 26

• B decrypts A’s message by computing ci−si mod 26.

The good news: bulletproof cryptography
The bad news: horrible for e-commerce

• How do random users exchange the pad?

17

Public Key Cryptography

Idea of public key cryptography (Diffie-Hellman)

• Everyone’s encryption scheme is posted publically

◦ e.g. in a “telephone book”

• If A wants to send an encoded message to B, she looks
up B’s public key (i.e., B’s encryption algorithm) in
the telephone book

• But only B has the decryption key corresponding to
his public key

BIG advantage: A need not know nor trust B.

There seems to be a problem though:

• If we publish the encryption key, won’t everyone be
able to decrypt?

Key observation: decrypting might be too hard, unless
you know the key

• Computing f−1 could be much harder than comput-
ing f

Now the problem is to find an appropriate (f, f−1) pair
for which this is true

• Number theory to the rescue

18

RSA: Key Generation

Generating encryption/decryption keys

• Choose two very large (hundreds of digits) primes p, q.

◦ This is done using probabilistic primality testing

◦ Choose a random large number and check if it is
prime

◦ By the prime number theorem, there are lots of
primes out there

• Let n = pq.

• Choose e ∈ N relatively prime to (p − 1)(q − 1).

◦ How do you find e?: Guess e, and use Euclid’s
algorithm to check gcd(e, (p − 1)(q − 1)) = 1

◦ How many numbers less than n are relatively prime
to (p − 1)(q − 1)?

∗ Lots: could choose e to be another prime.

• Compute d, the inverse of e modulo (p − 1)(q − 1).

◦ Can do this using using Euclidean algorithm

• Publish n and e (that’s your public key)

• Keep the decryption key d to yourself.

19

RSA: Sending encrypted messages

How does someone send you a message?

• The message is divided into blocks each represented
as a number M between 0 and n. To encrypt M , send

C = M e mod n.

◦ Need to use fast exponentiation (2 log(n) multipli-
cations) to do this efficiently

Example: Encrypt “stop” using e = 13 and n = 2537:

• s t o p ↔ 18 19 14 15 ↔ 1819 1415

• 181913 mod 2537 = 2081 and
141513 mod 2537 = 2182 so

• 2081 2182 is the encrypted message.

• We did not need to know p = 43, q = 59 for that.

20

RSA: Decryption

If you get an encrypted message C = M e mod n, how do
you decrypt

• Compute Cd ≡ M ed (mod n).

◦ Can do this quickly using fast exponentiation again

Claim: M ed ≡ M (mod n)

Proof: Since ed ≡ 1 (mod (p − 1)(q − 1))

• ed ≡ 1 (mod p − 1) and ed ≡ 1 (mod q − 1)

Since ed = k(p − 1) + 1 for some k,

M ed = (M p−1)kM ≡ M (mod p)

(Fermat’s Little Theorem)

• True even if p | M

Similarly, M ed ≡ M (mod q)

Since p, q, relatively prime, M ed ≡ M (mod n) (Theorem
10).

Note: Decryption would be easy for someone who can
factor N .

• RSA depends on factoring being hard!

21

Digital Signatures

How can I send you a message in such a way that you’re
convinced it came from me (and can convince others).

• Want an analogue of a “certified” signature

Cool observation:

• To send a message M , send Md (mod n)

◦ where (n, e) is my public key

• Recipient (and anyone else) can compute (Md)e ≡
M (mod n), since M is public

• No one else could have sent this message, since no one
else knows d.

22

Probabilistic Primality Testing

RSA requires really large primes.

• This requires testing numbers for primality.

◦ Although there are now polynomial tests, the stan-
dard approach now uses probabilistic primality tests

Main idea in probabilistic primality testing algorithm:

• Choose b between 1 and n at random

• Apply an easily computable (deterministic) test T (b, n)
such that

◦ T (b, n) is true (for all b) if n is prime.

◦ T (b, n) there are lots of b’s for which b is false if n
is not prime.

Example: Compute gcd(b, n).

• If n is prime, gcd(b, n) = 1

• If n is composite, gcd(b, n) 6= 1 for some b’s

◦ Problem: there may not be that many witnesses

23

Example: Compute bn−1 mod n

• If n is prime bn−1 ≡ 1 (mod n) (Fermat)

• Unfortunately, there are some composite numbers n
such that bn−1 ≡ 1 (mod n)

◦ These are called Carmichael numbers

There are tests T (b, n) with the property that

• T (b, n) = 1 for all b if n is prime

• T (b, n) = 0 for at least 1/3 of the b’s if n is composite

• T (b, n) is computable quickly (in polynomial time)

Constructing T requires a little more number theory

• Beyond the scope of this course.

Given such a test T , it’s easy to construct a probabilistic
primality test:

• Choose 100 (or 200) b’s at random

• Test T (b, n) for each one

• If T (b, n) = 0 for any b, declare b composite

◦ This is definitely correct

• If T (b, n) = 1 for all b’s you chose, declare n prime

◦ This is highly likely to be correct

24

Prelim Coverage

• Chapter 0:

◦ Sets

∗ Operations: union, intersection, complementa-
tion, set difference

∗ Proving equality of sets

◦ Relations:

∗ reflexive, symmetric, transitive, equivalence re-
lations

∗ transitive closure

◦ Functions

∗ Injective, surjective, bijective

∗ Inverse function

◦ Important functions and how to manipulate them:

∗ exponent, logarithms, ceiling, floor, mod

◦ Summation and product notation

◦ Matrices (especially how to multiply them)

◦ Proof and logic concepts

∗ logical notions (⇒, ≡, ¬)

∗ Proofs by contradiction

25

• Chapter 1

◦ You don’t have to write algorithms in their nota-
tion

◦ You may have to read algorithms in their notation

• Chapter 2

◦ induction vs. strong induction

◦ guessing the right inductive hypothesis

◦ inductive (recursive) definitions

• Number Theory - everything we covered in class in-
cluding

◦ Fundamental Theorem of Arithmetic

◦ gcd, lcm

◦ Euclid’s Algorithm and its extended version

◦ Modular arithmetic, linear congruences,

◦ modular inverse and CRT

◦ Fermat’s little theorem

◦ RSA

◦ Probabilistic primality testing

You need to know all the theorems and corollaries
discussed in class.

26

