Modular Arithmetic

Remember: a = b (mod m) means a and b have the same
remainder when divided by m.

e Equivalently: a = b (mod m) iff m | (a —b)

e a is congruent to b mod m
Theorem 7: If a1 = as (mod m) and by = by (mod m),
then
(a) (a1 + b1) = (ag + by) (mod m)

(b) a1by = asby (mod m)

Proof: Suppose
®eq=cm+7r,a=Ccm-+r
eby=dm+1, by=dym+7r'
S0
eaj+b = (ci+d)m+ (r+r)
e ay+by=(co+do)m+(r+1r)
m | (a1 +b1) — (ag + ba) = ((e1 + dy) — (c2 + d2))m

e Conclusion: a1 + by = ag + by (mod m).

Hashing

Problem: How can we efficiently store, retrieve, and
delete records from a large database?

e For example, students records.
Assume, each record has a unique key
e E.g. student ID, Social Security #
Do we keep an array sorted by the key?
e Easy retrieval but difficult insertion and deletion.
How about a table with an entry for every possible key?
e Often infeasible, almost always wasteful.
e There are 10'° possible social security numbers.

Solution: store the records in an array of size N, where N
is somewhat bigger than the expected number of records.

e Store record with id & in location h(k)

o h is the hash function
o Basic hash function: h(k) := k (mod N).

o A collision occurs when h(ky) = h(ks) and ky # ks.
o Choose N sufficiently large to minimize collisions

e Lots of techniques for dealing with collisions

3

For multiplication:

o aiby = (cxdym +1'cy + rdy)m + rr’

® asby = (codom + 1o + rdy)m + 1’
m | (a1b1 — U,ng)
e Conclusion: ajby = aghy (mod m).

Bottom line: addition and multiplication carry over to
the modular world.

Modular arithmetic has lots of applications.

e Here are four . ..

Pseudorandom Sequences

For randomized algorithms we need a random number
generator.

¢

e Most languages provide you with a function “rand”.
e There is nothing random about rand!

o It creates an apparently random sequence deter-
ministically
o These are called pseudorandom sequences

A standard technique for creating psuedorandom sequences:
the linear congruential method.

e Choose a modulus m € N7,
e a multiplier @ € {2,3,...,m — 1}, and
e an increment ¢ € Z,, = {0,1,...,m —1}.
e Choose a seed zy € Z,,
o Typically the time on some internal clock is used
e Compute Z,11 = ax, + ¢ (mod m).

Warning: a poorly implemented rand, such as in C, can
wreak havoc on Monte Carlo simulations.

ISBN Numbers

Since 1968, most published books have been assigned a
10-digit ISBN numbers:

e identifies country of publication, publisher, and book
itself

e The ISBN number for DAM3 is 1-56881-166-7
All the information is encoded in the first 9 digits
e The 10th digit is used as a parity check
o If the digits are ay, ..., ap, then we must have
ay + 2as + - -+ + 9ag + 10ayp = 0 (mod 11).
e For DAM3, get

14+2x54+3x64+4x8+5x8+6x1
+7x148x64+9%x6+10x7=28 =0 (mod 11)

e This test always detects errors in single digits and
transposition errors

o Two arbitrary errors may cancel out

Similar parity checks are used in universal product codes
(UPC codes/bar codes) that appear on almost all items

e The numbers are encoded by thicknesses of bars, to
make them machine readable

5

Linear Congruences

The equation ax = b for a,b € R is uniquely solvable if
a#0: z=ba"l.

e Can we also (uniquely) solve az = b (mod m)?
o If z(is a solution, then so is xg + km Vk € Z
o ...since km =0 (mod m).
So, uniqueness can only be mod m.
But even mod m, there can be more than one solution:
e Consider 2z = 2 (mod 4)
e Clearly =1 (mod 4) is one solution
e But so is z = 3 (mod 4)!

Theorem 8: If ged(a,m) = 1 then there is a unique
solution (mod m) to az = b (mod m).

Proof: Suppose r, s € Z both solve the equation:
e then ar = as (mod m), so m | a(r — s)
e Since ged(a, m) = 1, by Corollary 3, m | (r — s)
e But that means r = s (mod m)

So if there’s a solution at all, then it’s unique mod m.

7

Casting out 9s

Notice that a number is equivalent to the sum of its dig-
its mod 9. This can be used as a way of checking your
addition. [More in class]|

Solving Linear Congruences

But why is there a solution to az = b (mod m)?
Key idea: find a~! mod m; then z = ba~! (mod m)

e By Corollary 2, since ged(a, m) = 1, there exist s, ¢
such that
as+mt=1

e So as =1 (mod m)
e That means s = a~ ! (mod m)

e z = bs (mod m)

The Chinese Remainder Theorem

Suppose we want to solve a system of linear congruences:
Example: Find x such that

z =2 (mod 3)

x =3 (mod 5)

x =2 (mod 7)
Can we solve for 7 Is the answer unique?
Definition: mq,...,m, are pairwise relatively prime
if each pair m;, mj; is relatively prime.

Theorem 9 (Chinese Remainder Theorem): Let
mi, ..., my, € NT be pairwise relatively prime. The sys-
tem
r=a; (modm;) i=1,2...n (1)
has a unique solution modulo M = II{m,.
e The best we can hope for is uniqueness modulo M:

o If z is a solution then so is x + kM for any k € Z.

Proof: First I show that there is a solution; then I'll
show it’s unique.

CRT: Example

Find z such that
2 (mod 3)
3 (mod 5)
2 (mod 7)
Find y; such that y; = 2 (mod 3), y; = 0 (mod 5/7):

x
x
x

e y; has the form y] x 5 x 7
e 35y; = 2 (mod 3)
eyl =150y =35
Find y, such that yo = 3 (mod 5), yo = 0 (mod 3/7):
e 45 has the form gy x 3 x 7
e 21y, = 3 (mod 5)
oyl =3 50 ys = 063.
Find y3 such that y3 = 2 (mod 7), y3 = 0 (mod 3/5):
e y3 has the form y5 x 3 x 5
e 15y =2 (mod 7)
oyt =2 s0ys = 30.
Solution is © = y1 + y2 + y3 = 35 + 63 + 30 = 128

11

CRT': Existence

Key idea for existence:
Suppose we can find yy, ..., y, such that

¥ = a; (mod m;)
y; =0 (mod my) if j # .
Now consider y := X7_; y;.
Yy = a; (mod my)
e Since y; = a; mod m; and y; = 0 mod m; if j # .
So y is a solution!
e Now we need to find yy, ..., Y.
o Let My = M/m; =myX--Xm;_1 XM X+ XMy,
o ged(M;, my;) = 1, since m;’s pairwise relatively prime
o No common prime factors among any of the m;’s
Choose ¥, such that (M;)y, = a; (mod m;)
o Can do that by Theorem 8, since ged(M;, m;) = 1.
Let y; = yiM;.
o y; is a multiple of m; if j # 4, so y; = 0 (mod m;)
oy; = yiM; = a; (mod m;) by construction.
So 1 + - - + y, is a solution to the system, mod M.

10

CRT: Uniqueness

What if x,y are both solutions to the equations?

e =y (modm;)=m|(x—y)fori=1...,n

e Claim: M =mq---m, | (z —y)

es0x =y (mod M)
Theorem 10: If my,...,m, are pairwise relatively
prime and m; | b for i = 1,...,n, then my ---m, | b.
Proof: By induction on n.

e For n =1 the statement is trivial.
Suppose statement holds for n = N.

e Suppose my, ..., my+1 relatively prime, m; | b for
i=1,... N+1

eby IH, my---my | b= b=my---myc for some ¢
e By assumption, my11 | b, som | (my---my)c

e ged(my -+~ my, my+1) = 1 (since m;’s pairwise rela-
tively prime = no common factors)

e by Corollary 3, my.1 | ¢
esoc=dmpyy1, b=my---mymyi1d

S0 My Mmyy1 | b.

An Application of CRT: Computer
Arithmetic with Large Integers

Suppose we want to perform arithmetic operations (ad-
dition, multiplication) with extremely large integers

e t00 large to be represented easily in a computer
Idea:

e Step 1: Find suitable moduli my, ..., m, so that m;’s
are relatively prime and m; - - - m,, is bigger than the
answer.

e Step 2: Perform all the operations mod m;, j =
1,...,n.

o This means we're working with much smaller num-
bers (no bigger than m;)

o The operations are much faster

o Can do this in parallel
e Suppose the answer mod m; is a;:
o Use CRT to find z such that z = a; (mod m;)

o The unique x such that 0 < x < my ---m,, is the
answer to the original problem.

Fermat’s Little Theorem

Theorem 11 (Fermat’s Little Theorem):
(a) If p prime and ged(p, a) = 1, then a?~! = 1 (mod p).
(b) For all @ € Z, a? = a (mod p).
Proof. Let
A={1,2,....p—1}
B = {lamod p,2a mod p, ..., (p — 1)a mod p}
Claim: A = B.
e 0 ¢ B, since p [ja,so B C A.
o If i # j, then 4a mod p # ja mod p
osince p [(j —1i)a
Thus [A|=p—1,s0 A= B.
Therefore,
Hieai = iepi (mod p)
= (p—1)'=a(a)---(p—1a=(p—1)!a’"" (mod p)
= pl (a7 =1)(p-1)
= p|(a?t —1) [since ged(p, (p — 1)1) = 1]
= a’"' =1 (mod p)
It follows that a? = a (mod p)
e This is true even if ged(p,a) # 1; ie, if p | a
Why is this being taught in a CS course?

15

Example: The following are pairwise relatively prime:
935 _] 93 _] 933 _ 1 929 _ 1 923 _
We can add and multiply positive integers up to

<235 _ 1)(234 _ 1)(233 _ 1><229 _ 1)<223 _ 1> > 2163.

Private Key Cryptography

Alice (aka A) wants to send an encrypted message to Bob
(aka B).

e A and B might share a private key known only to
them.

o The same key serves for encryption and decryption.

e Example: Caesar’s cipher f(m) = m + 3 mod 26
(shift each letter by three)

o WKH EXWOHU GLG LW
o THE BUTLER DID IT

This particular cryptosystem is very easy to solve

e Idea: look for common letters (E, A, T, S)

One Time Pads

Some private key systems are completely immune to crypt-
analysis:

e A and B share the only two copies of a long list of
random integers s; for i =1,..., N.

o A sends B the message {m;}"_; encrypted as:
¢ = (m; + s;) mod 26

e B decrypts A’s message by computing ¢; — s; mod 26.

The good news: bulletproof cryptography
The bad news: horrible for e-commerce

e How do random users exchange the pad?

RSA: Key Generation

Generating encryption/decryption keys
e Choose two very large (hundreds of digits) primes p, g.
o This is done using probabilistic primality testing
o Choose a random large number and check if it is
prime

o By the prime number theorem, there are lots of
primes out there

e Let n = pq.
e Choose e € N relatively prime to (p — 1)(¢ — 1).

o How do you find e?: Guess e, and use Euclid’s
algorithm to check ged(e, (p—1)(g—1)) =1

o How many numbers less than n are relatively prime
to (p—1)(qg—1)?
* Lots: could choose e to be another prime.

e Compute d, the inverse of e modulo (p — 1)(¢ — 1).
o Can do this using using Euclidean algorithm

e Publish n and e (that’s your public key)

e Keep the decryption key d to yourself.

19

Public Key Cryptography

Idea of public key cryptography (Diffie-Hellman)
e Everyone’s encryption scheme is posted publically
oe.g. in a “telephone book”

e If A wants to send an encoded message to B, she looks
up B’s public key (i.e., B’s encryption algorithm) in
the telephone book

e But only B has the decryption key corresponding to
his public key

BIG advantage: A need not know nor trust B.
There seems to be a problem though:

e [f we publish the encryption key, won’t everyone be
able to decrypt?

Key observation: decrypting might be too hard, unless
you know the key

e Computing f~! could be much harder than comput-
ing f
Now the problem is to find an appropriate (f, f1) pair
for which this is true

e Number theory to the rescue

18

RSA: Sending encrypted messages

How does someone send you a message?

e The message is divided into blocks each represented
as a number M between 0 and n. To encrypt M, send

C = M° mod n.

o Need to use fast exponentiation (2log(n) multipli-
cations) to do this efficiently

Example: Encrypt “stop” using e = 13 and n = 2537:
es t op« 18 19 14 15« 1819 1415

o 1819"% mod 2537 = 2081 and
1415 mod 2537 = 2182 so

e 2081 2182 is the encrypted message.
e We did not need to know p = 43, ¢ = 59 for that.

20

RSA: Decryption

If you get an encrypted message C' = M*° mod n, how do
you decrypt

e Compute C? = M (mod n).
o Can do this quickly using fast exponentiation again

Claim: M = M (mod n)
Proof: Since ed =1 (mod (p — 1)(¢g — 1))

ecd=1(modp—1)anded =1 (mod g — 1)
Since ed = k(p — 1) + 1 for some k,

M = (Mpfl)kM = M (mod p)

(Fermat’s Little Theorem)

e True even if p | M
Similarly, M = M (mod q)

Since p, ¢, relatively prime, M*! = M (mod n) (Theorem
10).

Note: Decryption would be easy for someone who can
factor N.

e RSA depends on factoring being hard!

21

Probabilistic Primality Testing

RSA requires really large primes.
e This requires testing numbers for primality.

o Although there are now polynomial tests, the stan-
dard approach now uses probabilistic primality tests

Main idea in probabilistic primality testing algorithm:
e Choose b between 1 and n at random

o Apply an easily computable (deterministic) test T'(b, n)
such that

o T'(b,n) is true (for all b) if n is prime.

o T'(b,n) there are lots of b’s for which b is false if n
is not prime.

Example: Compute ged(b, n).
o If n is prime, ged(b,n) =1
o If n is composite, ged(b, n) # 1 for some b’s

o Problem: there may not be that many witnesses

23

Digital Signatures

How can I send you a message in such a way that you're
convinced it came from me (and can convince others).

e Want an analogue of a “certified” signature
Cool observation:
e To send a message M, send M“ (mod n)
o where (n, e) is my public key

e Recipient (and anyone else) can compute (M?)* =
M (mod n), since M is public

e No one else could have sent this message, since no one
else knows d.

22

Example: Compute 6"~! mod n
o If nis prime "' =1 (mod n) (Fermat)

e Unfortunately, there are some composite numbers n
such that ¥"~! =1 (mod n)

o These are called Carmichael numbers
There are tests T'(b, n) with the property that
e T'(b,n) =1 for all bif n is prime
e T'(b,n) = 0 for at least 1/3 of the b’s if n is composite
e T'(b,n) is computable quickly (in polynomial time)
Constructing 7' requires a little more number theory
e Beyond the scope of this course.

Given such a test T, it’s easy to construct a probabilistic
primality test:

e Choose 100 (or 200) b’s at random
o Test T'(b,n) for each one
e If T'(b,n) = 0 for any b, declare b composite
o This is definitely correct
o If T'(b,n) =1 for all b’s you chose, declare n prime

o This is highly likely to be correct

24

Prelim Coverage

e Chapter 0:

o Sets

* Operations: union, intersection, complementa-
tion, set difference

* Proving equality of sets
o Relations:
* reflexive, symmetric, transitive, equivalence re-
lations
* transitive closure
o Functions
* Injective, surjective, bijective
* Inverse function
o Important functions and how to manipulate them:
x exponent, logarithms, ceiling, floor, mod
o Summation and product notation
o Matrices (especially how to multiply them)
o Proof and logic concepts
* logical notions (=, =, —)

x Proofs by contradiction

25

e Chapter 1
o You don’t have to write algorithms in their nota-
tion
o You may have to read algorithms in their notation
e Chapter 2
o induction vs. strong induction
o guessing the right inductive hypothesis
o inductive (recursive) definitions
e Number Theory - everything we covered in class in-
cluding
o Fundamental Theorem of Arithmetic
o ged, lem
o Euclid’s Algorithm and its extended version
o Modular arithmetic, linear congruences,
o modular inverse and CRT
o Fermat’s little theorem
o RSA
o Probabilistic primality testing
You need to know all the theorems and corollaries
discussed in class.

26

