Modular Arithmetic

Remember: $a \equiv b(\bmod m)$ means a and b have the same remainder when divided by m.

- Equivalently: $a \equiv b(\bmod m)$ iff $m \mid(a-b)$
- a is congruent to $b \bmod m$

Theorem 7: If $a_{1} \equiv a_{2}(\bmod m)$ and $b_{1} \equiv b_{2}(\bmod m)$, then
(a) $\left(a_{1}+b_{1}\right) \equiv\left(a_{2}+b_{2}\right)(\bmod m)$
(b) $a_{1} b_{1} \equiv a_{2} b_{2}(\bmod m)$

Proof: Suppose

- $a_{1}=c_{1} m+r, a_{2}=c_{2} m+r$
- $b_{1}=d_{1} m+r^{\prime}, b_{2}=d_{2} m+r^{\prime}$

So

- $a_{1}+b_{1}=\left(c_{1}+d_{1}\right) m+\left(r+r^{\prime}\right)$
- $a_{2}+b_{2}=\left(c_{2}+d_{2}\right) m+\left(r+r^{\prime}\right)$
$m \mid\left(\left(a_{1}+b_{1}\right)-\left(a_{2}+b_{2}\right)=\left(\left(c_{1}+d_{1}\right)-\left(c_{2}+d_{2}\right)\right) m\right.$
- Conclusion: $a_{1}+b_{1} \equiv a_{2}+b_{2}(\bmod m)$.

For multiplication:

- $a_{1} b_{1}=\left(c_{1} d_{1} m+r^{\prime} c_{1}+r d_{1}\right) m+r r^{\prime}$
- $a_{2} b_{2}=\left(c_{2} d_{2} m+r^{\prime} c_{2}+r d_{2}\right) m+r r^{\prime}$
$m \mid\left(a_{1} b_{1}-a_{2} b_{2}\right)$
- Conclusion: $a_{1} b_{1} \equiv a_{2} b_{2}(\bmod m)$.

Bottom line: addition and multiplication carry over to the modular world.

Modular arithmetic has lots of applications.

- Here are four ...

Hashing

Problem: How can we efficiently store, retrieve, and delete records from a large database?

- For example, students records.

Assume, each record has a unique key

- E.g. student ID, Social Security \#

Do we keep an array sorted by the key?

- Easy retrieval but difficult insertion and deletion.

How about a table with an entry for every possible key?

- Often infeasible, almost always wasteful.
- There are 10^{10} possible social security numbers.

Solution: store the records in an array of size N, where N is somewhat bigger than the expected number of records.

- Store record with id k in location $h(k)$
- h is the hash function
- Basic hash function: $h(k):=k(\bmod N)$.
- A collision occurs when $h\left(k_{1}\right)=h\left(k_{2}\right)$ and $k_{1} \neq k_{2}$.
- Choose N sufficiently large to minimize collisions
- Lots of techniques for dealing with collisions

Pseudorandom Sequences

For randomized algorithms we need a random number generator.

- Most languages provide you with a function "rand".
- There is nothing random about rand!
- It creates an apparently random sequence deterministically
- These are called pseudorandom sequences

A standard technique for creating psuedorandom sequences: the linear congruential method.

- Choose a modulus $m \in N^{+}$,
- a multiplier $a \in\{2,3, \ldots, m-1\}$, and
- an increment $c \in Z_{m}=\{0,1, \ldots, m-1\}$.
- Choose a seed $x_{0} \in Z_{m}$
- Typically the time on some internal clock is used
- Compute $x_{n+1}=a x_{n}+c(\bmod m)$.

Warning: a poorly implemented rand, such as in C, can wreak havoc on Monte Carlo simulations.

ISBN Numbers

Since 1968, most published books have been assigned a 10-digit ISBN numbers:

- identifies country of publication, publisher, and book itself
- The ISBN number for DAM3 is 1-56881-166-7

All the information is encoded in the first 9 digits

- The 10th digit is used as a parity check
- If the digits are a_{1}, \ldots, a_{10}, then we must have

$$
a_{1}+2 a_{2}+\cdots+9 a_{9}+10 a_{10} \equiv 0(\bmod 11) .
$$

- For DAM3, get

$$
\begin{aligned}
& 1+2 \times 5+3 \times 6+4 \times 8+5 \times 8+6 \times 1 \\
& +7 \times 1+8 \times 6+9 \times 6+10 \times 7=286 \equiv 0(\bmod 11)
\end{aligned}
$$

- This test always detects errors in single digits and transposition errors
- Two arbitrary errors may cancel out

Similar parity checks are used in universal product codes (UPC codes/bar codes) that appear on almost all items

- The numbers are encoded by thicknesses of bars, to make them machine readable

Casting out 9s

Notice that a number is equivalent to the sum of its digits mod 9 . This can be used as a way of checking your addition. [More in class]

Linear Congruences

The equation $a x=b$ for $a, b \in R$ is uniquely solvable if $a \neq 0: x=b a^{-1}$.

- Can we also (uniquely) solve $a x \equiv b(\bmod m)$?
- If x_{0} is a solution, then so is $x_{0}+k m \forall k \in Z$ - ... since $k m \equiv 0(\bmod m)$.

So, uniqueness can only be $\bmod m$.
But even $\bmod m$, there can be more than one solution:

- Consider $2 x \equiv 2(\bmod 4)$
- Clearly $x \equiv 1(\bmod 4)$ is one solution
- But so is $x \equiv 3(\bmod 4)$!

Theorem 8: If $\operatorname{gcd}(a, m)=1$ then there is a unique solution $(\bmod m)$ to $a x \equiv b(\bmod m)$.
Proof: Suppose $r, s \in Z$ both solve the equation:

- then $a r \equiv a s(\bmod m)$, so $m \mid a(r-s)$
- Since $\operatorname{gcd}(a, m)=1$, by Corollary $3, m \mid(r-s)$
- But that means $r \equiv s(\bmod m)$

So if there's a solution at all, then it's unique $\bmod m$.

Solving Linear Congruences

But why is there a solution to $a x \equiv b(\bmod m)$?
Key idea: find $a^{-1} \bmod m$; then $x \equiv b a^{-1}(\bmod m)$

- By Corollary 2 , since $\operatorname{gcd}(a, m)=1$, there exist s, t such that

$$
a s+m t=1
$$

- So $a s \equiv 1(\bmod m)$
- That means $s \equiv a^{-1}(\bmod m)$
- $x \equiv b s(\bmod m)$

The Chinese Remainder Theorem

Suppose we want to solve a system of linear congruences:
Example: Find x such that

$$
\begin{aligned}
& x \equiv 2(\bmod 3) \\
& x \equiv 3(\bmod 5) \\
& x \equiv 2(\bmod 7)
\end{aligned}
$$

Can we solve for x ? Is the answer unique?
Definition: m_{1}, \ldots, m_{n} are pairwise relatively prime if each pair m_{i}, m_{j} is relatively prime.

Theorem 9 (Chinese Remainder Theorem): Let $m_{1}, \ldots, m_{n} \in N^{+}$be pairwise relatively prime. The system

$$
\begin{equation*}
x \equiv a_{i}\left(\bmod m_{i}\right) \quad i=1,2 \ldots n \tag{1}
\end{equation*}
$$

has a unique solution modulo $M=\Pi_{1}^{n} m_{i}$.

- The best we can hope for is uniqueness modulo M :
- If x is a solution then so is $x+k M$ for any $k \in Z$.

Proof: First I show that there is a solution; then I'll show it's unique.

CRT: Existence

Key idea for existence:
Suppose we can find y_{1}, \ldots, y_{n} such that

$$
\begin{aligned}
& y_{i} \equiv a_{i}\left(\bmod m_{i}\right) \\
& y_{i} \equiv 0\left(\bmod m_{j}\right) \quad \text { if } j \neq i
\end{aligned}
$$

Now consider $y:=\sum_{j=1}^{n} y_{j}$.

$$
\sum_{j=1}^{n} y_{j} \equiv a_{i}\left(\bmod m_{i}\right)
$$

- Since $y_{i}=a_{i} \bmod m_{i}$ and $y_{j}=0 \bmod m_{j}$ if $j \neq i$.

So y is a solution!

- Now we need to find y_{1}, \ldots, y_{n}.
- Let $M_{i}=M / m_{i}=m_{1} \times \cdots \times m_{i-1} \times m_{i+1} \times \cdots \times m_{n}$.
- $\operatorname{gcd}\left(M_{i}, m_{i}\right)=1$, since m_{j} 's pairwise relatively prime - No common prime factors among any of the m_{j} 's Choose y_{i}^{\prime} such that $\left(M_{i}\right) y_{i}^{\prime} \equiv a_{i}\left(\bmod m_{i}\right)$
- Can do that by Theorem 8 , since $\operatorname{gcd}\left(M_{i}, m_{i}\right)=1$.

Let $y_{i}=y_{i}^{\prime} M_{i}$.

- y_{i} is a multiple of m_{j} if $j \neq i$, so $y_{i} \equiv 0\left(\bmod m_{j}\right)$
- $y_{i}=y_{i}^{\prime} M_{i} \equiv a_{i}\left(\bmod m_{i}\right)$ by construction.

So $y_{1}+\cdots+y_{n}$ is a solution to the system, $\bmod M$.

CRT: Example

Find x such that

$$
\begin{aligned}
& x \equiv 2(\bmod 3) \\
& x \equiv 3(\bmod 5) \\
& x \equiv 2(\bmod 7)
\end{aligned}
$$

Find y_{1} such that $y_{1} \equiv 2(\bmod 3), y_{1} \equiv 0(\bmod 5 / 7)$:

- y_{1} has the form $y_{1}^{\prime} \times 5 \times 7$
- $35 y_{1}^{\prime} \equiv 2(\bmod 3)$
- $y_{1}^{\prime}=1$, so $y_{1}=35$.

Find y_{2} such that $y_{2} \equiv 3(\bmod 5), y_{2} \equiv 0(\bmod 3 / 7)$:

- y_{2} has the form $y_{2}^{\prime} \times 3 \times 7$
- $21 y_{2}^{\prime} \equiv 3(\bmod 5)$
- $y_{2}^{\prime}=3$, so $y_{2}=63$.

Find y_{3} such that $y_{3} \equiv 2(\bmod 7), y_{3} \equiv 0(\bmod 3 / 5)$:

- y_{3} has the form $y_{3}^{\prime} \times 3 \times 5$
- $15 y_{3}^{\prime} \equiv 2(\bmod 7)$
- $y_{3}^{\prime}=2$, so $y_{3}=30$.

Solution is $x=y_{1}+y_{2}+y_{3}=35+63+30=128$

CRT: Uniqueness

What if x, y are both solutions to the equations?

- $x \equiv y\left(\bmod m_{i}\right) \Rightarrow m_{i} \mid(x-y)$, for $i=1, \ldots, n$
- Claim: $M=m_{1} \cdots m_{n} \mid(x-y)$
- so $x \equiv y(\bmod M)$

Theorem 10: If m_{1}, \ldots, m_{n} are pairwise relatively prime and $m_{i} \mid b$ for $i=1, \ldots, n$, then $m_{1} \cdots m_{n} \mid b$. Proof: By induction on n.

- For $n=1$ the statement is trivial.

Suppose statement holds for $n=N$.

- Suppose m_{1}, \ldots, m_{N+1} relatively prime, $m_{i} \mid b$ for $i=1, \ldots, N+1$.
- by IH, $m_{1} \cdots m_{N} \mid b \Rightarrow b=m_{1} \cdots m_{N} c$ for some c
- By assumption, $m_{N+1} \mid b$, so $m \mid\left(m_{1} \cdots m_{N}\right) c$
- $\operatorname{gcd}\left(m_{1} \cdots m_{N}, m_{N+1}\right)=1$ (since m_{i} 's pairwise relatively prime \Rightarrow no common factors)
- by Corollary 3, $m_{N+1} \mid c$
- so $c=d m_{N+1}, b=m_{1} \cdots m_{N} m_{N+1} d$
- so $m_{1} \cdots m_{N+1} \mid b$.

An Application of CRT: Computer Arithmetic with Large Integers

Suppose we want to perform arithmetic operations (addition, multiplication) with extremely large integers

- too large to be represented easily in a computer Idea:
- Step 1: Find suitable moduli m_{1}, \ldots, m_{n} so that m_{i} 's are relatively prime and $m_{1} \cdots m_{n}$ is bigger than the answer.
- Step 2: Perform all the operations $\bmod m_{j}, j=$ $1, \ldots, n$.
- This means we're working with much smaller numbers (no bigger than m_{j})
- The operations are much faster
- Can do this in parallel
- Suppose the answer $\bmod m_{j}$ is a_{j} :
- Use CRT to find x such that $x \equiv a_{j}\left(\bmod m_{j}\right)$
- The unique x such that $0<x<m_{1} \cdots m_{n}$ is the answer to the original problem.

Example: The following are pairwise relatively prime:

$$
2^{35}-1,2^{34}-1,2^{33}-1,2^{29}-1,2^{23}-1
$$

We can add and multiply positive integers up to

$$
\left(2^{35}-1\right)\left(2^{34}-1\right)\left(2^{33}-1\right)\left(2^{29}-1\right)\left(2^{23}-1\right)>2^{163}
$$

Fermat's Little Theorem

Theorem 11 (Fermat's Little Theorem):

(a) If p prime and $\operatorname{gcd}(p, a)=1$, then $a^{p-1} \equiv 1(\bmod p)$.
(b) For all $a \in Z, a^{p} \equiv a(\bmod p)$.

Proof. Let

$$
\begin{aligned}
& A=\{1,2, \ldots, p-1\} \\
& B=\{1 a \bmod p, 2 a \bmod p, \ldots,(p-1) a \bmod p\}
\end{aligned}
$$

Claim: $A=B$.

- $0 \notin B$, since $p \nless j a$, so $B \subset A$.
- If $i \neq j$, then $i a \bmod p \neq j a \bmod p$
- since $p \nmid(j-i) a$

Thus $|A|=p-1$, so $A=B$.
Therefore,

$$
\begin{aligned}
& \Pi_{i \in A} i \equiv \Pi_{i \in B} i(\bmod p) \\
\Rightarrow & (p-1)!\equiv a(2 a) \cdots(p-1) a=(p-1)!a^{p-1}(\bmod p) \\
\Rightarrow & p \mid\left(a^{p-1}-1\right)(p-1)! \\
\Rightarrow & p \mid\left(a^{p-1}-1\right)[\operatorname{since} \operatorname{gcd}(p,(p-1)!)=1] \\
\Rightarrow & a^{p-1} \equiv 1(\bmod p)
\end{aligned}
$$

It follows that $a^{p} \equiv a(\bmod p)$

- This is true even if $\operatorname{gcd}(p, a) \neq 1$; i.e., if $p \mid a$ Why is this being taught in a CS course?

Private Key Cryptography

Alice (aka A) wants to send an encrypted message to Bob (aka B).

- A and B might share a private key known only to them.
- The same key serves for encryption and decryption.
- Example: Caesar's cipher $f(m)=m+3 \bmod 26$ (shift each letter by three) - WKH EXWOHU GLG LW - THE BUTLER DID IT

This particular cryptosystem is very easy to solve

- Idea: look for common letters (E, A, T, S)

One Time Pads

Some private key systems are completely immune to cryptanalysis:

- A and B share the only two copies of a long list of random integers s_{i} for $i=1, \ldots, N$.
- A sends B the message $\left\{m_{i}\right\}_{i=1}^{n}$ encrypted as:

$$
c_{i}=\left(m_{i}+s_{i}\right) \bmod 26
$$

- B decrypts A's message by computing $c_{i}-s_{i} \bmod 26$.

The good news: bulletproof cryptography
The bad news: horrible for e-commerce

- How do random users exchange the pad?

Public Key Cryptography

Idea of public key cryptography (Diffie-Hellman)

- Everyone's encryption scheme is posted publically - e.g. in a "telephone book"
- If A wants to send an encoded message to B, she looks up B's public key (i.e., B's encryption algorithm) in the telephone book
- But only B has the decryption key corresponding to his public key
BIG advantage: A need not know nor trust B.
There seems to be a problem though:
- If we publish the encryption key, won't everyone be able to decrypt?
Key observation: decrypting might be too hard, unless you know the key
- Computing f^{-1} could be much harder than computing f
Now the problem is to find an appropriate (f, f^{-1}) pair for which this is true
- Number theory to the rescue

RSA: Key Generation

Generating encryption/decryption keys

- Choose two very large (hundreds of digits) primes p, q.
- This is done using probabilistic primality testing
- Choose a random large number and check if it is prime
- By the prime number theorem, there are lots of primes out there
- Let $n=p q$.
- Choose $e \in N$ relatively prime to $(p-1)(q-1)$.
- How do you find e ?: Guess e, and use Euclid's algorithm to check $\operatorname{gcd}(e,(p-1)(q-1))=1$
- How many numbers less than n are relatively prime to $(p-1)(q-1)$?
* Lots: could choose e to be another prime.
- Compute d, the inverse of e modulo $(p-1)(q-1)$.
- Can do this using using Euclidean algorithm
- Publish n and e (that's your public key)
- Keep the decryption key d to yourself.

RSA: Sending encrypted messages

How does someone send you a message?

- The message is divided into blocks each represented as a number M between 0 and n. To encrypt M, send

$$
C=M^{e} \bmod n
$$

- Need to use fast exponentiation ($2 \log (n)$ multiplications) to do this efficiently

Example: Encrypt "stop" using $e=13$ and $n=2537$:

- stop p $\leftrightarrow 18191415 \leftrightarrow 18191415$
- $1819^{13} \bmod 2537=2081$ and
$1415^{13} \bmod 2537=2182$ so
- 20812182 is the encrypted message.
- We did not need to know $p=43, q=59$ for that.

RSA: Decryption

If you get an encrypted message $C=M^{e} \bmod n$, how do you decrypt

- Compute $C^{d} \equiv M^{e d}(\bmod n)$.
- Can do this quickly using fast exponentiation again

Claim: $M^{e d} \equiv M(\bmod n)$
Proof: Since $e d \equiv 1(\bmod (p-1)(q-1))$

- $e d \equiv 1(\bmod p-1)$ and $e d \equiv 1(\bmod q-1)$

Since ed $=k(p-1)+1$ for some k,

$$
M^{e d}=\left(M^{p-1}\right)^{k} M \equiv M(\bmod p)
$$

(Fermat's Little Theorem)

- True even if $p \mid M$

Similarly, $M^{e d} \equiv M(\bmod q)$
Since p, q, relatively prime, $M^{e d} \equiv M(\bmod n)($ Theorem 10).

Note: Decryption would be easy for someone who can factor N.

- RSA depends on factoring being hard!

Digital Signatures

How can I send you a message in such a way that you're convinced it came from me (and can convince others).

- Want an analogue of a "certified" signature Cool observation:
- To send a message M, send $M^{d}(\bmod n)$
- where (n, e) is my public key
- Recipient (and anyone else) can compute $\left(M^{d}\right)^{e} \equiv$ $M(\bmod n)$, since M is public
- No one else could have sent this message, since no one else knows d.

Probabilistic Primality Testing

RSA requires really large primes.

- This requires testing numbers for primality.
- Although there are now polynomial tests, the standard approach now uses probabilistic primality tests

Main idea in probabilistic primality testing algorithm:

- Choose b between 1 and n at random
- Apply an easily computable (deterministic) test $T(b, n)$ such that
- $T(b, n)$ is true (for all b) if n is prime.
- $T(b, n)$ there are lots of b 's for which b is false if n is not prime.

Example: Compute gcd (b, n).

- If n is prime, $\operatorname{gcd}(b, n)=1$
- If n is composite, $\operatorname{gcd}(b, n) \neq 1$ for some b 's
- Problem: there may not be that many witnesses

Example: Compute $b^{n-1} \bmod n$

- If n is prime $b^{n-1} \equiv 1(\bmod n)$ (Fermat)
- Unfortunately, there are some composite numbers n such that $b^{n-1} \equiv 1(\bmod n)$
- These are called Carmichael numbers

There are tests $T(b, n)$ with the property that

- $T(b, n)=1$ for all b if n is prime
- $T(b, n)=0$ for at least $1 / 3$ of the b 's if n is composite
- $T(b, n)$ is computable quickly (in polynomial time)

Constructing T requires a little more number theory

- Beyond the scope of this course.

Given such a test T, it's easy to construct a probabilistic primality test:

- Choose 100 (or 200) b's at random
- Test $T(b, n)$ for each one
- If $T(b, n)=0$ for any b, declare b composite
- This is definitely correct
- If $T(b, n)=1$ for all b 's you chose, declare n prime - This is highly likely to be correct

Prelim Coverage

- Chapter 0:
- Sets
* Operations: union, intersection, complementation, set difference
* Proving equality of sets
- Relations:
* reflexive, symmetric, transitive, equivalence relations
* transitive closure
- Functions
* Injective, surjective, bijective
* Inverse function
- Important functions and how to manipulate them:
* exponent, logarithms, ceiling, floor, mod
- Summation and product notation
- Matrices (especially how to multiply them)
- Proof and logic concepts
* logical notions $(\Rightarrow, \equiv \neg)$
* Proofs by contradiction
- Chapter 1
- You don't have to write algorithms in their notation
- You may have to read algorithms in their notation
- Chapter 2
- induction vs. strong induction
- guessing the right inductive hypothesis
- inductive (recursive) definitions
- Number Theory - everything we covered in class including
- Fundamental Theorem of Arithmetic
- gcd, lcm
- Euclid's Algorithm and its extended version
- Modular arithmetic, linear congruences,
- modular inverse and CRT
- Fermat's little theorem
- RSA
- Probabilistic primality testing

You need to know all the theorems and corollaries discussed in class.

