
An Algorithm for Prime Factorization

Fact: If a is the smallest number > 1 that divides n,
then a is prime.

Proof: By contradiction. (Left to the reader.)

• A multiset is like a set, except repetitions are allowed

◦ {{2, 2, 3, 3, 5}} is a multiset, not a set

PF(n): A prime factorization procedure

Input: n ∈ N+

Output: PFS - a multiset of n’s prime factors
PFS := ∅
for a = 2 to

√
n do

if a | n then PFS := PF(n/a) ∪{{a}} return PFS
if PFS = ∅ then PFS := {{n}} [n is prime]

Example: PF(7007) = {{7}}∪ PF(1001)
= {{7, 7}}∪ PF(143)
= {{7, 7, 11}}∪ PF(13)
= {{7, 7, 11, 13}}.

1

The Complexity of Factoring

Algorithm PF runs in exponential time:

•We’re checking every number up to
√

n

Can we do better?

•We don’t know.

• Modern-day cryptography implicitly depends on the
fact that we can’t!

2

How Many Primes Are There?

Theorem 4: [Euclid] There are infinitely many primes.

Proof: By contradiction.

• Suppose that there are only finitely many primes:
p1, . . . , pn.

• Consider q = p1 × · · · × pn + 1

• Clearly q > p1, ..., pn, so it can’t be prime.

• So q must have a prime factor, which must be one of
p1, . . . , pn (since these are the only primes).

• Suppose it is pi.

◦ Then pi | q and pi | p1 × · · · × pn

◦ So pi | (q− p1× · · ·× pn); i.e., pi | 1 (Corollary 1)

◦ Contradiction!

Largest currently-known prime (as of 5/04):

• 224036583− 1: 7235733 digits

• Check www.utm.edu/research/primes

Primes of the form 2p − 1 where p is prime are called
Mersenne primes.

• Search for large primes focuses on Mersenne primes

3

The distribution of primes

There are quite a few primes out there:

• Roughly one in every log(n) numbers is prime

Formally: let π(n) be the number of primes ≤ n:

Prime Number Theorem Theorem: π(n) ∼ n/ log(n);
that is,

lim
n→∞π(n)/(n/ log(n)) = 1

Why is this important?

• Cryptosystems like RSA use a secret key that is the
product of two large (100-digit) primes.

• How do you find two large primes?

◦ Roughly one of every 100 100-digit numbers is prime

◦ To find a 100-digit prime;

∗ Keep choosing odd numbers at random

∗ Check if they are prime (using fast randomized
primality test)

∗ Keep trying until you find one

∗ Roughly 100 attempts should do it

4

(Some) Open Problems Involving
Primes

• Are there infinitely many Mersenne primes?

• Goldbach’s Conjecture: every even number greater
than 2 is the sum of two primes.

◦ E.g., 6 = 3 + 3, 20 = 17 + 3, 28 = 17 + 11

◦ This has been checked out to 6× 1016 (as of 2003)

◦ Every sufficiently large integer (> 1043,000!) is the
sum of four primes

• Two prime numbers that differ by two are twin primes

◦ E.g.: (3,5), (5,7), (11,13), (17,19), (41,43)

◦ also 4, 648, 619, 711, 505× 260,000 ± 1!

Are there infinitely many twin primes?

All these conjectures are believed to be true, but no one
has proved them.

5

Greatest Common Divisor (gcd)

Definition: For a ∈ Z let D(a) = {k ∈ N : k | a}
• D(a) = {divisors of a}.

Claim. |D(a)| <∞ if (and only if) a 6= 0.

Proof: If a 6= 0 and k | a, then 0 < k < a.

Definition: For a, b ∈ Z, CD(a, b) = D(a) ∩ D(b) is
the set of common divisors of a, b.

Definition: The greatest common divisor of a and b
is

gcd(a, b) = max(CD(a, b)).

Examples:

• gcd(6, 9) = 3

• gcd(13, 100) = 1

• gcd(6, 45) = 3

Def.: a and b are relatively prime if gcd(a, b) = 1.

• Example: 4 and 9 are relatively prime.

• Two numbers are relatively prime iff they have no
common prime factors.

Efficient computation of gcd(a, b) lies at the heart of com-
mercial cryptography.

6

Least Common Multiple (lcm)

Definition: The least common multiple of a, b ∈ N+,
lcm(a, b), is the smallest n ∈ N+ such that a | n and
b | n.

• Formally, M(a) = {ka | k ∈ N} – the multiples of a

• Define CM(a, b) = M(a)∩M(b) – the common mul-
tiples of a and b

• lcm(a, b) = min(CM(a, b))

• Examples: lcm(4, 9) = 36, lcm(4, 10) = 20.

7

Computing the GCD

There is a method for calculating the gcd that goes back
to Euclid:

• Recall: if n > m and q divides both n and m, then
q divides n−m and n + m.

Therefore gcd(n,m) = gcd(m, n−m).

• Proof: Show CD(m, n) = CD(m,n−m); i.e., that q
divides both n and m iff q divides both m and n−m.
(If q divides n and m, then q divides n −m by the
argument above. If q divides m and n − m, then q
divides m + (n−m) = n.)

• This allows us to reduce the gcd computation to a
simpler case.

We can do even better:

• gcd(n,m) = gcd(m, n−m) = gcd(m, n− 2m) = . . .

• keep going as long as n− qm ≥ 0 — bn/mc steps

Consider gcd(6, 45):

• b45/6c = 7; remainder is 3 (45 ≡ 3 (mod 6))

• gcd(6, 45) = gcd(6, 45− 7× 6) = gcd(6, 3) = 3

8

We can keep this up this procedure to compute gcd(n1, n2):

• If n1 ≥ n2, write n1 as q1n2 + r1, where 0 ≤ r1 < n2

◦ q1 = bn1/n2c
• gcd(n1, n2) = gcd(r1, n2); r1 = n1 mod n2

• Now r1 < n2, so switch their roles:

• n2 = q2r1 + r2, where 0 ≤ r2 < r1

• gcd(r1, n2) = gcd(r1, r2)

• Notice that max(n1, n2) > max(r1, n2) > max(r1, r2)

• Keep going until we have a remainder of 0 (i.e., some-
thing of the form gcd(rk, 0) or (gcd(0, rk))

◦ This is bound to happen sooner or later

9

Euclid’s Algorithm

Input m, n [m, n natural numbers, m ≥ n]
num← m; denom← n [Initialize num and denom]
repeat until denom = 0

q← bnum/denomc
rem← num− (q ∗ denom) [num mod denom = rem]
num← denom [New num]
denom← rem [New denom; note num ≥ denom]

endrepeat
Output num [num = gcd(m, n)]

Example: gcd(84, 33)

Iteration 1: num = 84, denom = 33, q = 2, rem = 18
Iteration 2: num = 33, denom = 18, q = 1, rem = 15
Iteration 3: num = 18, denom = 15, q = 1, rem = 3
Iteration 4: num = 15, denom = 3, q = 5, rem = 0
Iteration 5: num = 3, denom = 0 ⇒ gcd(84, 33) = 3

gcd(84, 33) = gcd(33, 18) = gcd(18, 15) = gcd(15, 3) =
gcd(3, 0) = 3

10

Euclid’s Algorithm: Correctness

How do we know this works?

•We have two loop invariants, which are true each
time we start the loop:

◦ gcd(m, n) = gcd(num, denom)

◦ num ≥ denom

• At the end, denom = 0, so
gcd(num, denom) = num.

11

Euclid’s Algorithm: Complexity

Input m, n [m, n natural numbers, m ≥ n]
num← m; denom← n [Initialize num and denom]
repeat until denom = 0

q← bnum/denomc
rem← num− (q ∗ denom)
num← denom [New num]
denom← rem [New denom; note num ≥ denom]

endrepeat
Output num [num = gcd(m, n)]

How many times do we go through the loop in the Eu-
clidean algorithm:

• Best case: Easy. Never!

• Average case: Too hard

•Worst case: Can’t answer this exactly, but we can get
a good upper bound.

◦ See how fast denom goes down in each iteration.

12

Claim: After two iterations, denom is halved:

• Recall num = q ∗ denom + rem. Use denom′ and
denom′′ to denote value of denom after 1 and 2 iter-
ations. Two cases:

1. rem ≤ denom/2 ⇒ denom′ ≤ denom/2 and
denom′′ < denom/2.

2. rem > denom/2. But then num′ = denom,
denom′ = rem. At next iteration, q = 1, and
denom′′ = rem′ = num′ − denom′ < denom/2

• How long until denom is ≤ 1?

◦ < 2 log2(m) steps!

• After at most 2 log2(m) steps, denom = 0.

13

The Extended Euclidean Algorithm

Theorem 5: For a, b ∈ N , not both 0, we can compute
s, t ∈ Z such that

gcd(a, b) = sa + tb.

• Example: gcd(9, 4) = 1 = 1 · 9 + (−2) · 4.

Proof: By strong induction on max(a, b). Suppose with-
out loss of generality a ≤ b.

• If max(a, b) = 1, then must have b = 1, gcd(a, b) = 1

◦ gcd(a, b) = 0 · a + 1 · b.
• If max(a, b) > 1, there are three cases:

◦ If a = 0, then gcd(a, b) = b = 0 · a + 1 · b
◦ If a = b, then gcd(a, b) = a = 1 · a + 0 · b
◦ If 0 < a < b, then gcd(a, b) = gcd(a, b − a).

Moreover, b = max(a, b) > max(a, b − a). Thus,
by IH, we can compute s, t such that

gcd(a, b) = gcd(a, a−b) = sa+t(b−a) = (s−t)a+tb.

Note: this computation basically follows the “recipe” of
Euclid’s algorithm.

14

Example

Recall that gcd(84, 33) = gcd(33, 18) = gcd(18, 15) =
gcd(15, 3) = gcd(3, 0) = 3

We work backwards to write 3 as a linear combination of
84 and 33:

3 = 18− 15
[Now 3 is a linear combination of 18 and 15]

= 18− (33− 18)
= 2(18)− 33

[Now 3 is a linear combination of 18 and 33]
= 2(84− 2× 33))− 33
= 2× 84− 5× 33

[Now 3 is a linear combination of 84 and 33]

15

Some Consequences

Corollary 2: If a and b are relatively prime, then there
exist s and t such that as + bt = 1.

Corollary 3: If gcd(a, b) = 1 and a | bc, then a | c.
Proof:

• Exist s, t ∈ Z such that sa + tb = 1

• Multiply both sides by c: sac + tbc = c

• Since a | bc, a | sac + tbc, so a | c
Corollary 4: If p is prime and p | Πn

i=1 ai, then p | ai

for some 1 ≤ i ≤ n.

Proof: By induction on n:

• If n = 1: trivial.

Suppose the result holds for n ≤ N and p | ΠN+1
i=1 ai.

• Note that p | ΠN+1
i=1 ai = (ΠN

i=1 ai)aN+1.

• If p | aN+1 we are done.

• If not, gcd(p, aN+1) = 1.

• By Corollary 3, p | ΠN
i=1 ai

• By the IH, p | ai for some 1 ≤ i ≤ N .

16

The Fundamental Theorem of
Arithmetic, II

Theorem 3: Every n > 1 can be represented uniquely
as a product of primes, written in nondecreasing size.

Proof: Still need to prove uniqueness. We do it by strong
induction.

• Base case: Obvious if n = 2.

Inductive step. Suppose OK for n′ < n.

• Suppose that n = Πs
i=1 pi = Πr

j=1 qj.

• p1 | Πr
j=1 qj, so by Corollary 4, p1 | qj for some j.

• But then p1 = qj, since both p1 and qj are prime.

• But then n/p1 = p2 · · · ps = q1 · · · qj−1qj+1 · · · qr

• Result now follows from I.H.

17

Characterizing the GCD and LCM

Theorem 6: Suppose a = Πn
i=1 pαi

i and b = Πn
i=1 pβi

i ,
where pi are primes and αi, βi ∈ N .

• Some αi’s, βi’s could be 0.

Then
gcd(a, b) = Πn

i=1 p
min(αi,βi)
i

lcm(a, b) = Πn
i=1 p

max(αi,βi)
i

Proof: For gcd, let c = Πn
i=1 p

min(αi,βi)
i .

Clearly c | a and c | b.
• Thus, c is a common divisor, so c ≤ gcd(a, b).

If qγ | gcd(a, b),

• must have q ∈ {p1, . . . , pn}
◦ Otherwise q 6 | a so q 6 | gcd(a, b) (likewise b)

If q = pi, qγ | gcd(a, b), must have γ ≤ min(αi, βi)

◦ E.g., if γ > αi, then pγ
i 6 | a

• Thus, c ≥ gcd(a, b).

Conclusion: c = gcd(a, b).

18

For lcm, let d = Πn
i=1 p

max(αi,βi)
i .

• Clearly a | d, b | d, so d is a common multiple.

• Thus, d ≥ lcm(a, b).

But if pδ
i | lcm(a, b), must have δ ≥ max(αi, βi).

• E.g., if δ < αi, then a 6 | lcm(a, b).

• Thus, d ≤ lcm(a, b).

Conclusion: d = lcm(a, b).

Example: 432 = 2433, and 95256 = 233572, so

• gcd(95256, 432) = 2333 = 216

• lcm(95256, 432) = 243572 = 190512.

Corollary 5: ab = gcd(a, b) · lcm(a, b)

Proof:

min(α, β) + max(α, β) = α + β.

Example: 4 · 10 = 2 · 20 = gcd(4, 10) · lcm(4, 10).

19

