An Algorithm for Prime Factorization

Fact: If a is the smallest number > 1 that divides n,
then a is prime.

Proof: By contradiction. (Left to the reader.)

e A multiset is like a set, except repetitions are allowed

0{{2,2,3,3,5}} is a multiset, not a set

PF(n): A prime factorization procedure

Input: n € N*
Output: PFS - a multiset of n’s prime factors
PFS =0
for a =2 to /n do
if a | n then PFS := PF(n/a) U{{a}} return PFS
if PFS = 0 then PFS := {{n}} [n is prime]

Example: PF(7007) = {{7}}U PF(1001)
= {{7,7}}U PF(143)
— {{7,7,11}}U PF(13)
= {{7,7,11,13}}.

1

How Many Primes Are There?

Theorem 4: [Euclid] There are infinitely many primes.

Proof: By contradiction.
e Suppose that there are only finitely many primes:
D1y« Pn
e Consider g =p; X -+ X p, +1
e Clearly g > py, ..., by, S0 it can’t be prime.

e So ¢ must have a prime factor, which must be one of
D1, .- ., P (since these are the only primes).

e Suppose it is p;.
o Then p; | gand p; | p1 X -+ X pp
oSopi|(g—pi - xpy)iie, pi|1(Corollary 1)
o Contradiction!
Largest currently-known prime (as of 5/04):
o 224036583 _ 1. 7935733 digits
e Check www.utm.edu/research/primes

Primes of the form 27 — 1 where p is prime are called
Mersenne primes.

e Search for large primes focuses on Mersenne primes

3

The Complexity of Factoring

Algorithm PF runs in exponential time:

e We're checking every number up to /n
Can we do better?

o We don't know.

e Modern-day cryptography implicitly depends on the
fact that we can’t!

The distribution of primes

There are quite a few primes out there:
e Roughly one in every log(n) numbers is prime

Formally: let 7(n) be the number of primes < n:

Prime Number Theorem Theorem: 7 (n) ~ n/log(n);

that is,
Ji 7w(n)/ (n/ log(n)) = 1
Why is this important?
e Cryptosystems like RSA use a secret key that is the
product of two large (100-digit) primes.
e How do you find two large primes?

o Roughly one of every 100 100-digit numbers is prime
o To find a 100-digit prime;
* Keep choosing odd numbers at random
* Check if they are prime (using fast randomized
primality test)
* Keep trying until you find one
* Roughly 100 attempts should do it

(Some) Open Problems Involving
Primes

e Are there infinitely many Mersenne primes?

e Goldbach’s Conjecture: every even number greater
than 2 is the sum of two primes.

oBEg,6=3+3,20=17+3,28=17+11
o This has been checked out to 6 x 10'° (as of 2003)

o Every sufficiently large integer (> 10%3%001) is the
sum of four primes

e Two prime numbers that differ by two are twin primes
o E.g.: (3,5), (5,7), (11,13), (17,19), (41,43)
o also 4,648,619, 711, 505 x 260:000 4 1
Are there infinitely many twin primes?

All these conjectures are believed to be true, but no one
has proved them.

Least Common Multiple (lcm)

Definition: The least common multiple of a,b € N*,
lem(a, b), is the smallest n € N such that a | n and
b|n.

e Formally, M(a) = {ka | k € N} - the multiples of a

o Define CM (a,b) = M(a)NM(b) — the common mul-
tiples of @ and b

e lem(a, b) = min(C'M(a, b))
e Examples: lem(4,9) = 36, lem(4, 10) = 20.

Greatest Common Divisor (gcd)

Definition: Fora € Z let D(a)={k € N : k | a}

e D(a) = {divisors of a}.
Claim. |D(a)| < oo if (and only if) a # 0.
Proof: If a # 0 and k | a, then 0 < k < a.
Definition: For a,b € Z, CD(a,b) = D(a) N D(b) is
the set of common divisors of a, b.

Definition: The greatest common divisor of a and b
is

ged(a, b) = max(C'D(a,b)).
Examples:
e gcd(6,9) =3
o ged(13,100) = 1
e gcd(6,45) =3
Def.: a and b are relatively prime if ged(a,b) = 1.
e Example: 4 and 9 are relatively prime.

e Two numbers are relatively prime iff they have no
common prime factors.

Efficient computation of ged(a, b) lies at the heart of com-
mercial cryptography.

Computing the GCD

There is a method for calculating the ged that goes back
to Euclid:

e Recall: if n > m and ¢ divides both n and m, then
q divides n — m and n + m.

Therefore ged(n, m) = ged(m,n — m).

e Proof: Show CD(m,n) = CD(m,n—m); i.e., that ¢
divides both n and m iff ¢ divides both m and n —m.
(If ¢ divides m and m, then ¢ divides n — m by the
argument above. If ¢ divides m and n — m, then ¢
divides m + (n —m) = n.)

e This allows us to reduce the ged computation to a
simpler case.

We can do even better:
e gcd(n,m) = ged(m,n —m) = ged(m,n —2m) = ...
o keep going as long as n — gm > 0 — |[n/m] steps
Consider ged(6, 45):
e [45/6] = 7; remainder is 3 (45 = 3 (mod 6))
o gcd(6,45) = ged(6,45 — 7 x 6) = ged(6,3) = 3

We can keep this up this procedure to compute ged(nq, ng):

o If ny > ny, write ny as ¢ng + 11, where 0 < r; < ny
oq = [ni/ns)

e gcd(ng, ng) = ged(ry, ne); 1 = ny mod ng

e Now 71 < ng, so switch their roles:

® ny = qor; + 19, Where 0 < ry < 1

o gcd(ry, me) = ged(ry, o)

e Notice that max(ny, ne) > max(ry, ng) > max(ry, r2)

e Keep going until we have a remainder of 0 (i.e., some-
thing of the form ged(ry, 0) or (ged(0, ry))

o This is bound to happen sooner or later

Euclid’s Algorithm: Correctness

How do we know this works?

e We have two loop invariants, which are true each
time we start the loop:

o ged(m, n) = ged(num, denom)
o num > denom

e At the end, denom = 0, so
ged(num, denom) = num.

Euclid’s Algorithm

Input m, n [m, n natural numbers, m > n|
num < m; denom < n [Initialize num and denom)
repeat until denom =0

q — | num/denom|
rem «— num — (¢ * denom) [num mod denom = rem|

num «— denom [New num]
denom — rem [New denom; note num > denom)
endrepeat

Output num [num = ged(m, n))

Example: ged(84, 33)

[teration 1: num = 84, denom = 33, ¢ =2, rem = 18
Iteration 2: num = 33, denom =18, ¢=1, rem = 15
[teration 3: num = 18, denom =15, ¢=1, rem =3
Iteration 4: num = 15, denom =3, ¢= 5, rem =0
Iteration 5: num = 3, denom = 0 = ged(84,33) = 3

ged(84,33) = ged(33, 18) = ged(18,15) = ged(15,3) =
ged(3,0) =3

Euclid’s Algorithm: Complexity

Input m, n [m, n natural numbers, m > n|
num «— m; denom < n [Initialize num and denom)
repeat until denom =0

q < | num/denom|
rem < num — (¢ * denom)

num «— denom [New num]
denom «— rem [New denom; note num > denom)
endrepeat

Output num [num = ged(m, n))
How many times do we go through the loop in the Eu-
clidean algorithm:

e Best case: Easy. Never!

e Average case: Too hard

e Worst case: Can'’t answer this exactly, but we can get
a good upper bound.

o See how fast denom goes down in each iteration.

Claim: After two iterations, denom is halved:

e Recall num = g * denom + rem. Use denom’ and
denom”” to denote value of denom after 1 and 2 iter-
ations. Two cases:
1.rem < denom/2 = denom’ < denom/2 and
denom” < denom/2.

2. rem > denom/2. But then num’' = denom,
denom’ = rem. At next iteration, ¢ = 1, and
denom” = rem’ = num' — denom’ < denom/2

e How long until denom is < 17
o < 2logy(m) steps!

o After at most 2logy(m) steps, denom = 0.

Example

Recall that ged(84,33) = ged(33,18) = ged(18,15) =
ged(15,3) = ged(3,0) = 3

We work backwards to write 3 as a linear combination of
84 and 33:
3 =18—-15
[Now 3 is a linear combination of 18 and 15]
=18 — (33 — 18)
=2(18) — 33
[Now 3 is a linear combination of 18 and 33]
=2(84—-2x33))—33
=2x8—-5x33
[Now 3 is a linear combination of 84 and 33]

The Extended Euclidean Algorithm

Theorem 5: For a,b € N, not both 0, we can compute
s,t € Z such that

ged(a, b) = sa + tb.
e Example: ged(9,4) =1=1-9+(-2)-4.
Proof: By strong induction on max(a, b). Suppose with-
out loss of generality a < b.
o If max(a,b) = 1, then must have b = 1, ged(a,b) =1
oged(a,b)=0-a+1-b.
o If max(a,b) > 1, there are three cases:
olIfa=0, then ged(a,b) =b=0-a+1-b
olIfa =0, then ged(a,b) =a=1-a+0-b
olf 0 < a < b, then ged(a,b) = ged(a,b — a).

Moreover, b = max(a,b) > max(a,b — a). Thus,
by IH, we can compute s, t such that

ged(a, b) = ged(a, a—b) = sa+t(b—a) = (s—t)a+tb.

Note: this computation basically follows the “recipe” of
Euclid’s algorithm.

Some Consequences

Corollary 2: If a and b are relatively prime, then there
exist s and ¢ such that as + bt = 1.

Corollary 3: If ged(a,b) = 1 and a | be, then a | c.
Proof:

e Ixist s, € Z such that sa +tb =1

e Multiply both sides by ¢: sac + tbe = ¢

e Since a | be, a | sac+the, so a | ¢

Corollary 4: If p is prime and p | 11, a;, then p | a;
for some 1 < i < n.

Proof: By induction on n:
o [f n = 1: trivial.
Suppose the result holds for n < N and p | [I¥4!a;.
e Note that p | TV4 a; = (ITY ai)an.
e If p| ans1 we are done.
o If not, ged(p, ans1) = 1.
e By Corollary 3, p | IV a;
e By the IH, p | a; for some 1 <i < N.

16

The Fundamental Theorem of
Arithmetic, 11

Theorem 3: Every n > 1 can be represented uniquely
as a product of primes, written in nondecreasing size.

Proof: Still need to prove uniqueness. We do it by strong
induction.

e Base case: Obvious if n = 2.
Inductive step. Suppose OK for n' < n.
e Suppose that n = II7_; p; = II7_, ¢;.
e p1 | IT_; gj, so by Corollary 4, p; | g; for some j.
e But then p; = gj, since both p; and g; are prime.

e But then n/p1 =pa---ps = @1~ ¢j—1qj4+1 - @

e Result now follows from I.H.

For lem, let d =TI, p?lax(a"""g").
e Clearly a | d, b | d, so d is a common multiple.
e Thus, d > lem(a, b).
But if p¢ | lem(a, b), must have § > max(ay, 3;).
e Eg. if 0 <q then a flem(a,bd).
e Thus, d < lem(a, b).
Conclusion: d = lem(a, b).
Example: 432 = 2433 and 95256 = 233°7%, so
e 0cd(95256,432) = 233% = 216
o 1cm (95256, 432) = 213972 = 190512.
Corollary 5: ab = gcd(a, b) - lem(a, b)
Proof:

min(a,) + max(«,) = a + S.

Example: 4-10 = 220 = ged(4, 10) - lem(4, 10).

Characterizing the GCD and LCM

Theorem 6: Suppose a = [T, pi’ and b = II? lpf’

(3
where p; are primes and oy, 3; € N.

e Some «;’s, 3;’s could be 0.

Then
n]in(az i)

ged(a, b) =111, p;
lem(a, b) = TI? ptMX((”"d?)

=11

Proof: For ged, let ¢ =117, p;m"m"ﬁ').
Clearly ¢ | a and ¢ | b.

e Thus, ¢ is a common divisor, so ¢ < ged(a, b).
If ¢7 | ged(a, b),
o must have ¢ € {p1,...,pa}
o Otherwise ¢ f a so ¢ f ged(a,b) (likewise b)
If g=pi, ¢ | ged(a, b), must have v < min(ay;, 5;)
oE.g,ifvy> a; thenp] fa
e Thus, ¢ > ged(a, b).

Conclusion: ¢ = ged(a, b).

