An Algorithm for Prime Factorization

Fact: If a is the smallest number > 1 that divides n, then a is prime.

Proof: By contradiction. (Left to the reader.)

A multiset is like a set, except repetitions are allowed
{{2,2,3,3,5}} is a multiset, not a set

PF(n): A prime factorization procedure

Input: $n \in N^+$ Output: PFS - a multiset of n's prime factors PFS := \emptyset for a = 2 to \sqrt{n} do if $a \mid n$ then PFS := PF $(n/a) \cup \{\{a\}\}$ return PFS if PFS = \emptyset then PFS := $\{\{n\}\}$ [n is prime]

Example:
$$PF(7007) = \{\{7\}\} \cup PF(1001)$$

= $\{\{7,7\}\} \cup PF(143)$
= $\{\{7,7,11\}\} \cup PF(13)$
= $\{\{7,7,11,13\}\}.$

The Complexity of Factoring

Algorithm PF runs in exponential time:

 \bullet We're checking every number up to \sqrt{n}

Can we do better?

- We don't know.
- Modern-day cryptography implicitly depends on the fact that we can't!

How Many Primes Are There?

Theorem 4: [Euclid] There are infinitely many primes. **Proof:** By contradiction.

- Suppose that there are only finitely many primes: p_1, \ldots, p_n .
- Consider $q = p_1 \times \cdots \times p_n + 1$
- Clearly $q > p_1, ..., p_n$, so it can't be prime.
- So q must have a prime factor, which must be one of p_1, \ldots, p_n (since these are the only primes).
- Suppose it is p_i .
 - Then $p_i \mid q$ and $p_i \mid p_1 \times \cdots \times p_n$
 - So $p_i \mid (q p_1 \times \cdots \times p_n)$; i.e., $p_i \mid 1$ (Corollary 1)
 - Contradiction!

Largest currently-known prime (as of 5/04):

- $2^{24036583} 1$: 7235733 digits
- Check www.utm.edu/research/primes

Primes of the form $2^p - 1$ where p is prime are called *Mersenne primes*.

• Search for large primes focuses on Mersenne primes

The distribution of primes

There are quite a few primes out there:

• Roughly one in every $\log(n)$ numbers is prime

Formally: let $\pi(n)$ be the number of primes $\leq n$:

Prime Number Theorem Theorem: $\pi(n) \sim n/\log(n)$; that is,

 $\lim_{n \to \infty} \pi(n) / (n / \log(n)) = 1$

Why is this important?

- Cryptosystems like RSA use a secret key that is the product of two large (100-digit) primes.
- How do you find two large primes?
 - Roughly one of every 100 100-digit numbers is prime
 - To find a 100-digit prime;
 - \ast Keep choosing odd numbers at random
 - * Check if they are prime (using fast randomized primality test)
 - * Keep trying until you find one
 - * Roughly 100 attempts should do it

(Some) Open Problems Involving Primes

- Are there infinitely many Mersenne primes?
- Goldbach's Conjecture: every even number greater than 2 is the sum of two primes.
 - \circ E.g., 6 = 3 + 3, 20 = 17 + 3, 28 = 17 + 11
 - This has been checked out to 6×10^{16} (as of 2003)
 - \circ Every sufficiently large integer (> $10^{43,000}!)$ is the sum of four primes

• Two prime numbers that differ by two are *twin primes*

E.g.: (3,5), (5,7), (11,13), (17,19), (41,43)
also 4, 648, 619, 711, 505 × 2^{60,000} ± 1!

Are there infinitely many twin primes?

All these conjectures are believed to be true, but no one has proved them.

Greatest Common Divisor (gcd)

Definition: For $a \in Z$ let $D(a) = \{k \in N : k \mid a\}$

• $D(a) = \{ \text{divisors of } a \}.$

Claim. $|D(a)| < \infty$ if (and only if) $a \neq 0$.

Proof: If $a \neq 0$ and $k \mid a$, then 0 < k < a.

Definition: For $a, b \in Z$, $CD(a, b) = D(a) \cap D(b)$ is the set of common divisors of a, b.

Definition: The greatest common divisor of a and b is

$$gcd(a, b) = max(CD(a, b)).$$

Examples:

- gcd(6,9) = 3
- gcd(13, 100) = 1
- $\bullet \gcd(6, 45) = 3$

Def.: a and b are relatively prime if gcd(a, b) = 1.

- Example: 4 and 9 are relatively prime.
- Two numbers are relatively prime iff they have no common prime factors.

Efficient computation of gcd(a, b) lies at the heart of commercial cryptography.

Least Common Multiple (lcm)

Definition: The *least common multiple* of $a, b \in N^+$, lcm(a, b), is the smallest $n \in N^+$ such that $a \mid n$ and $b \mid n$.

- Formally, $M(a) = \{ka \mid k \in N\}$ the multiples of a
- Define $CM(a, b) = M(a) \cap M(b)$ the common multiples of a and b
- $\operatorname{lcm}(a, b) = \min(CM(a, b))$
- Examples: lcm(4, 9) = 36, lcm(4, 10) = 20.

Computing the GCD

There is a method for calculating the gcd that goes back to Euclid:

• **Recall:** if n > m and q divides both n and m, then q divides n - m and n + m.

Therefore gcd(n, m) = gcd(m, n - m).

- Proof: Show CD(m, n) = CD(m, n-m); i.e., that q divides both n and m iff q divides both m and n-m. (If q divides n and m, then q divides n-m by the argument above. If q divides m and n-m, then q divides m + (n-m) = n.)
- This allows us to reduce the gcd computation to a simpler case.

We can do even better:

• $gcd(n,m) = gcd(m,n-m) = gcd(m,n-2m) = \dots$

• keep going as long as $n - qm \ge 0 - \lfloor n/m \rfloor$ steps Consider gcd(6, 45):

- $\lfloor 45/6 \rfloor = 7$; remainder is 3 ($45 \equiv 3 \pmod{6}$)
- $gcd(6, 45) = gcd(6, 45 7 \times 6) = gcd(6, 3) = 3$

We can keep this up this procedure to compute $gcd(n_1, n_2)$:

- If $n_1 \ge n_2$, write n_1 as $q_1n_2 + r_1$, where $0 \le r_1 < n_2$ $\circ q_1 = \lfloor n_1/n_2 \rfloor$
- $gcd(n_1, n_2) = gcd(r_1, n_2); r_1 = n_1 \mod n_2$
- Now $r_1 < n_2$, so switch their roles:
- $n_2 = q_2 r_1 + r_2$, where $0 \le r_2 < r_1$
- $gcd(r_1, n_2) = gcd(r_1, r_2)$
- Notice that $\max(n_1, n_2) > \max(r_1, n_2) > \max(r_1, r_2)$
- Keep going until we have a remainder of 0 (i.e., something of the form $gcd(r_k, 0)$ or $(gcd(0, r_k))$

• This is bound to happen sooner or later

Euclid's Algorithm

Input
$$m, n$$
 $[m, n \text{ natural numbers}, m \geq n]$ $num \leftarrow m; denom \leftarrow n$ [Initialize num and denom]repeat until denom $\leftarrow n$ $[Initialize num and denom]$ $q \leftarrow \lfloor num/denom \rfloor$ $q \leftarrow \lfloor num/denom \rfloor$ $rem \leftarrow num - (q * denom)$ $[num \mod denom = rem]$ $num \leftarrow denom$ $[New num]$ $denom \leftarrow rem$ $[New num]$ $denom \leftarrow rem$ $[New denom; note num \geq denom]$ endrepeatOutput num $[num = gcd(m, n)]$

Example: gcd(84, 33)

Iteration 1: num = 84, denom = 33, q = 2, rem = 18Iteration 2: num = 33, denom = 18, q = 1, rem = 15Iteration 3: num = 18, denom = 15, q = 1, rem = 3Iteration 4: num = 15, denom = 3, q = 5, rem = 0Iteration 5: num = 3, $denom = 0 \Rightarrow \gcd(84, 33) = 3$ $\gcd(84, 33) = \gcd(33, 18) = \gcd(18, 15) = \gcd(15, 3) = \gcd(3, 0) = 3$

Euclid's Algorithm: Correctness

How do we know this works?

• We have two *loop invariants*, which are true each time we start the loop:

 $\circ \gcd(m,n) = \gcd(\textit{num},\textit{denom})$

 $\circ \ num \geq denom$

• At the end, denom = 0, so gcd(num, denom) = num.

Euclid's Algorithm: Complexity

Input
$$m, n$$
 $[m, n \text{ natural numbers}, m \geq n]$ $num \leftarrow m; denom \leftarrow n$ [Initialize num and denom]repeat until denom $\leftarrow 0$ $q \leftarrow \lfloor num/denom \rfloor$ $q \leftarrow \lfloor num/denom \rfloor$ $rem \leftarrow num - (q * denom)$ $num \leftarrow denom$ [New num] $denom \leftarrow rem$ [New denom; note $num \geq denom$]endrepeatOutput $num [num = gcd(m, n)]$

How many times do we go through the loop in the Euclidean algorithm:

- Best case: Easy. Never!
- Average case: Too hard
- Worst case: Can't answer this exactly, but we can get a good upper bound.

• See how fast *denom* goes down in each iteration.

Claim: After two iterations, *denom* is halved:

- Recall num = q * denom + rem. Use denom' and denom'' to denote value of denom after 1 and 2 iterations. Two cases:
 - 1. $rem \leq denom/2 \Rightarrow denom' \leq denom/2$ and denom'' < denom/2.
 - 2. rem > denom/2. But then num' = denom, denom' = rem. At next iteration, q = 1, and denom'' = rem' = num' - denom' < denom/2
- How long until denom is ≤ 1 ?

 $\circ < 2\log_2(m)$ steps!

• After at most $2\log_2(m)$ steps, denom = 0.

The Extended Euclidean Algorithm

Theorem 5: For $a, b \in N$, not both 0, we can compute $s, t \in Z$ such that

$$gcd(a,b) = sa + tb.$$

• Example: $gcd(9, 4) = 1 = 1 \cdot 9 + (-2) \cdot 4$.

Proof: By strong induction on $\max(a, b)$. Suppose without loss of generality $a \leq b$.

- If max(a, b) = 1, then must have b = 1, gcd(a, b) = 1
 o gcd(a, b) = 0 ⋅ a + 1 ⋅ b.
- If $\max(a, b) > 1$, there are three cases:
 - If a = 0, then $gcd(a, b) = b = 0 \cdot a + 1 \cdot b$
 - If a = b, then $gcd(a, b) = a = 1 \cdot a + 0 \cdot b$
 - If 0 < a < b, then gcd(a,b) = gcd(a,b-a). Moreover, b = max(a,b) > max(a,b-a). Thus, by IH, we can compute s, t such that

$$gcd(a,b) = gcd(a,a-b) = sa+t(b-a) = (s-t)a+tb.$$

Note: this computation basically follows the "recipe" of Euclid's algorithm.

Example

Recall that gcd(84, 33) = gcd(33, 18) = gcd(18, 15) = gcd(15, 3) = gcd(3, 0) = 3

We work backwards to write 3 as a linear combination of 84 and 33:

3 = 18 - 15

[Now 3 is a linear combination of 18 and 15] = 18 - (33 - 18)= 2(18) - 33

[Now 3 is a linear combination of 18 and 33] = $2(84 - 2 \times 33)) - 33$

 $= 2 \times 84 - 5 \times 33$

[Now 3 is a linear combination of 84 and 33]

Some Consequences

Corollary 2: If a and b are relatively prime, then there exist s and t such that as + bt = 1.

Corollary 3: If gcd(a, b) = 1 and $a \mid bc$, then $a \mid c$. **Proof:**

- Exist $s, t \in Z$ such that sa + tb = 1
- Multiply both sides by c: sac + tbc = c
- Since $a \mid bc, a \mid sac + tbc$, so $a \mid c$

Corollary 4: If p is prime and $p \mid \prod_{i=1}^{n} a_i$, then $p \mid a_i$ for some $1 \leq i \leq n$.

Proof: By induction on *n*:

• If n = 1: trivial.

Suppose the result holds for $n \leq N$ and $p \mid \prod_{i=1}^{N+1} a_i$.

- Note that $p \mid \prod_{i=1}^{N+1} a_i = (\prod_{i=1}^N a_i)a_{N+1}$.
- If $p \mid a_{N+1}$ we are done.
- If not, $gcd(p, a_{N+1}) = 1$.
- By Corollary 3, $p \mid \prod_{i=1}^{N} a_i$
- By the IH, $p \mid a_i$ for some $1 \leq i \leq N$.

The Fundamental Theorem of Arithmetic, II

Theorem 3: Every n > 1 can be represented uniquely as a product of primes, written in nondecreasing size. **Proof:** Still need to prove uniqueness. We do it by strong

induction.

• Base case: Obvious if n = 2.

Inductive step. Suppose OK for n' < n.

- Suppose that $n = \prod_{i=1}^{s} p_i = \prod_{j=1}^{r} q_j$.
- $p_1 \mid \prod_{j=1}^r q_j$, so by Corollary 4, $p_1 \mid q_j$ for some j.
- But then $p_1 = q_j$, since both p_1 and q_j are prime.
- But then $n/p_1 = p_2 \cdots p_s = q_1 \cdots q_{j-1}q_{j+1} \cdots q_r$
- Result now follows from I.H.

Characterizing the GCD and LCM

Theorem 6: Suppose $a = \prod_{i=1}^{n} p_i^{\alpha_i}$ and $b = \prod_{i=1}^{n} p_i^{\beta_i}$, where p_i are primes and $\alpha_i, \beta_i \in N$.

• Some α_i 's, β_i 's could be 0.

Then

$$gcd(a,b) = \prod_{i=1}^{n} p_i^{\min(\alpha_i,\beta_i)}$$
$$lcm(a,b) = \prod_{i=1}^{n} p_i^{\max(\alpha_i,\beta_i)}$$

Proof: For gcd, let $c = \prod_{i=1}^{n} p_i^{\min(\alpha_i,\beta_i)}$. Clearly $c \mid a$ and $c \mid b$.

• Thus, c is a common divisor, so $c \leq \gcd(a, b)$. If $q^{\gamma} \mid \gcd(a, b)$,

- must have q ∈ {p₁,..., p_n}
 Otherwise q ≯ a so q ≯ gcd(a, b) (likewise b)
 If q = p_i, q^γ | gcd(a, b), must have γ ≤ min(α_i, β_i)
 E.g., if γ > α_i, then p_i^γ ≯ a
- Thus, $c \ge \gcd(a, b)$.

Conclusion: $c = \gcd(a, b)$.

For lcm, let $d = \prod_{i=1}^{n} p_i^{\max(\alpha_i,\beta_i)}$.

- Clearly $a \mid d, b \mid d$, so d is a common multiple.
- Thus, $d \ge \operatorname{lcm}(a, b)$.

But if $p_i^{\delta} \mid \text{lcm}(a, b)$, must have $\delta \geq \max(\alpha_i, \beta_i)$.

- E.g., if $\delta < \alpha_i$, then $a \not| \operatorname{lcm}(a, b)$.
- Thus, $d \leq \operatorname{lcm}(a, b)$.

Conclusion: $d = \operatorname{lcm}(a, b)$.

Example: $432 = 2^4 3^3$, and $95256 = 2^3 3^5 7^2$, so

- $gcd(95256, 432) = 2^3 3^3 = 216$
- $\operatorname{lcm}(95256, 432) = 2^4 3^5 7^2 = 190512.$

Corollary 5: $ab = gcd(a, b) \cdot lcm(a, b)$ **Proof:**

$$\min(\alpha, \beta) + \max(\alpha, \beta) = \alpha + \beta.$$

Example: $4 \cdot 10 = 2 \cdot 20 = \gcd(4, 10) \cdot \operatorname{lcm}(4, 10).$