An Algorithm for Prime Factorization

Fact: If a is the smallest number > 1 that divides n, then a is prime.

Proof: By contradiction. (Left to the reader.)

- A multiset is like a set, except repetitions are allowed
 - $\{\{2, 2, 3, 3, 5\}\}$ is a multiset, not a set

PF(n): A prime factorization procedure

Input: $n \in N^+$

Output: PFS - a multiset of n’s prime factors

PFS := \emptyset

for $a = 2$ to \sqrt{n} do
 if $a \mid n$ then PFS := PF(n/a) $\cup\{\{a\}\}$ return PFS

if PFS = \emptyset then PFS := $\{\{n\}\}$ [n is prime]

Example: PF(7007) = $\{\{7\}\} \cup$ PF(1001)

= $\{\{7, 7\}\} \cup$ PF(143)

= $\{\{7, 7, 11\}\} \cup$ PF(13)

= $\{\{7, 7, 11, 13\}\}$.
The Complexity of Factoring

Algorithm PF runs in exponential time:

- We’re checking every number up to \sqrt{n}

Can we do better?

- We don’t know.
- Modern-day cryptography implicitly depends on the fact that we can’t!
How Many Primes Are There?

Theorem 4: [Euclid] There are infinitely many primes.

Proof: By contradiction.

- Suppose that there are only finitely many primes: p_1, \ldots, p_n.
- Consider $q = p_1 \times \cdots \times p_n + 1$.
- Clearly $q > p_1, \ldots, p_n$, so it can’t be prime.
- So q must have a prime factor, which must be one of p_1, \ldots, p_n (since these are the only primes).
- Suppose it is p_i.
 - Then $p_i \mid q$ and $p_i \mid p_1 \times \cdots \times p_n$.
 - So $p_i \mid (q - p_1 \times \cdots \times p_n)$; i.e., $p_i \mid 1$ (Corollary 1).
 - Contradiction!

Largest currently-known prime (as of 5/04):
- $2^{24036583} - 1$: 7235733 digits
- Check www.utm.edu/research/primes

Primes of the form $2^p - 1$ where p is prime are called **Mersenne primes**.

- Search for large primes focuses on Mersenne primes
The distribution of primes

There are quite a few primes out there:

• Roughly one in every \(\log(n) \) numbers is prime

Formally: let \(\pi(n) \) be the number of primes \(\leq n \):

Prime Number Theorem Theorem: \(\pi(n) \sim n/\log(n) \);
that is,

\[
\lim_{n \to \infty} \frac{\pi(n)}{n/\log(n)} = 1
\]

Why is this important?

• Cryptosystems like RSA use a secret key that is the product of two large (100-digit) primes.

• How do you find two large primes?
 - Roughly one of every 100 100-digit numbers is prime
 - To find a 100-digit prime:
 * Keep choosing odd numbers at random
 * Check if they are prime (using fast randomized primality test)
 * Keep trying until you find one
 * Roughly 100 attempts should do it
(Some) Open Problems Involving Primes

- Are there infinitely many Mersenne primes?
- Goldbach’s Conjecture: every even number greater than 2 is the sum of two primes.
 - E.g., $6 = 3 + 3$, $20 = 17 + 3$, $28 = 17 + 11$
 - This has been checked out to 6×10^{16} (as of 2003)
 - Every sufficiently large integer ($> 10^{43,000}$) is the sum of four primes
- Two prime numbers that differ by two are twin primes
 - E.g.: (3,5), (5,7), (11,13), (17,19), (41,43)
 - also 4, 648, 619, 711, 505 \times 2^{60,000} \pm 1!

Are there infinitely many twin primes?

All these conjectures are believed to be true, but no one has proved them.
Greatest Common Divisor (gcd)

Definition: For $a \in \mathbb{Z}$ let $D(a) = \{k \in \mathbb{N} : k \mid a\}$
- $D(a) = \{\text{divisors of } a\}$.

Claim. $|D(a)| < \infty$ if (and only if) $a \neq 0$.

Proof: If $a \neq 0$ and $k \mid a$, then $0 < k < a$.

Definition: For $a, b \in \mathbb{Z}$, $CD(a, b) = D(a) \cap D(b)$ is the set of common divisors of a, b.

Definition: The *greatest common divisor* of a and b is

$$\gcd(a, b) = \max(CD(a, b)).$$

Examples:
- $\gcd(6, 9) = 3$
- $\gcd(13, 100) = 1$
- $\gcd(6, 45) = 3$

Def.: a and b are *relatively prime* if $\gcd(a, b) = 1$.
- **Example:** 4 and 9 are relatively prime.
- Two numbers are relatively prime iff they have no common prime factors.

Efficient computation of $\gcd(a, b)$ lies at the heart of commercial cryptography.
Least Common Multiple (lcm)

Definition: The least common multiple of $a, b \in N^+$, \(\text{lcm}(a, b) \), is the smallest $n \in N^+$ such that $a \mid n$ and $b \mid n$.

- Formally, $M(a) = \{ka \mid k \in N\}$ – the multiples of a
- Define $CM(a, b) = M(a) \cap M(b)$ – the common multiples of a and b
- $\text{lcm}(a, b) = \min(CM(a, b))$
- Examples: $\text{lcm}(4, 9) = 36$, $\text{lcm}(4, 10) = 20$.
Computing the GCD

There is a method for calculating the gcd that goes back to Euclid:

• **Recall:** if $n > m$ and q divides both n and m, then q divides $n - m$ and $n + m$.

Therefore $\gcd(n, m) = \gcd(m, n - m)$.

• Proof: Show $CD(m, n) = CD(m, n - m)$; i.e., that q divides both n and m iff q divides both m and $n - m$. (If q divides n and m, then q divides $n - m$ by the argument above. If q divides m and $n - m$, then q divides $m + (n - m) = n$.)

• This allows us to reduce the gcd computation to a simpler case.

We can do even better:

- $\gcd(n, m) = \gcd(m, n - m) = \gcd(m, n - 2m) = \ldots$
- keep going as long as $n - qm \geq 0$ — $\lceil n/m \rceil$ steps

Consider $\gcd(6, 45)$:

- $\lceil 45/6 \rceil = 7$; remainder is 3 ($45 \equiv 3 \pmod{6}$)
- $\gcd(6, 45) = \gcd(6, 45 - 7 \times 6) = \gcd(6, 3) = 3$
We can keep this up this procedure to compute gcd(n_1, n_2):

- If $n_1 \geq n_2$, write n_1 as $q_1n_2 + r_1$, where $0 \leq r_1 < n_2$
 - $q_1 = \lfloor n_1/n_2 \rfloor$
- $\gcd(n_1, n_2) = \gcd(r_1, n_2)$; $r_1 = n_1 \mod n_2$
- Now $r_1 < n_2$, so switch their roles:
- $n_2 = q_2r_1 + r_2$, where $0 \leq r_2 < r_1$
- $\gcd(r_1, n_2) = \gcd(r_1, r_2)$
- Notice that $\max(n_1, n_2) > \max(r_1, n_2) > \max(r_1, r_2)$
- Keep going until we have a remainder of 0 (i.e., something of the form $\gcd(r_k, 0)$ or $(\gcd(0, r_k)$)
 - This is bound to happen sooner or later
Euclid’s Algorithm

Input m, n \quad [m, n$ natural numbers, \(m \geq n\)]
\[\text{num} \leftarrow m; \text{denom} \leftarrow n\] \quad [Initialize num and denom]
repeat until denom = 0
\[q \leftarrow \lfloor \text{num}/\text{denom} \rfloor\]
\[\text{rem} \leftarrow \text{num} - (q \times \text{denom})\] \quad [num mod denom = rem]
\[\text{num} \leftarrow \text{denom}\] \quad [New num]
\[\text{denom} \leftarrow \text{rem}\] \quad [New denom; note \(num \geq denom\)]
endrepeat
Output num [num = gcd(m, n)]

Example: gcd(84, 33)

Iteration 1: num = 84, denom = 33, \(q = 2\), rem = 18
Iteration 2: num = 33, denom = 18, \(q = 1\), rem = 15
Iteration 3: num = 18, denom = 15, \(q = 1\), rem = 3
Iteration 4: num = 15, denom = 3, \(q = 5\), rem = 0
Iteration 5: num = 3, denom = 0 \(\Rightarrow\) gcd(84, 33) = 3

gcd(84, 33) = gcd(33, 18) = gcd(18, 15) = gcd(15, 3) = gcd(3, 0) = 3
Euclid’s Algorithm: Correctness

How do we know this works?

• We have two loop invariants, which are true each time we start the loop:

 ○ $\gcd(m, n) = \gcd(num, denom)$
 ○ $num \geq denom$

• At the end, $denom = 0$, so $\gcd(num, denom) = num$.
Euclid’s Algorithm: Complexity

Input m, n [m, n natural numbers, $m \geq n$]
num ← m; denom ← n [Initialize num and denom]
repeat until denom = 0
 $q \leftarrow \lfloor num/denom \rfloor$
 rem ← num − ($q \times denom$)
 num ← denom [New num]
 denom ← rem [New denom; note num \geq denom]
endrepeat
Output num [num = gcd(m, n)]

How many times do we go through the loop in the Euclidean algorithm:

- Best case: Easy. Never!
- Average case: Too hard
- Worst case: Can’t answer this exactly, but we can get a good upper bound.
 - See how fast denom goes down in each iteration.
Claim: After two iterations, \(denom \) is halved:

- Recall \(num = q \times denom + rem \). Use \(denom' \) and \(denom'' \) to denote value of \(denom \) after 1 and 2 iterations. Two cases:

 1. \(rem \leq denom/2 \Rightarrow denom' \leq denom/2 \) and \(denom'' < denom/2 \).

 2. \(rem > denom/2 \). But then \(num' = denom \), \(denom' = rem \). At next iteration, \(q = 1 \), and \(denom'' = rem' = num' - denom' < denom/2 \).

- How long until \(denom \) is \(\leq 1 \)?

 - \(< 2 \log_2(m) \) steps!

- After at most \(2 \log_2(m) \) steps, \(denom = 0 \).
The Extended Euclidean Algorithm

Theorem 5: For $a, b \in \mathbb{N}$, not both 0, we can compute $s, t \in \mathbb{Z}$ such that

$$\gcd(a, b) = sa + tb.$$

- **Example:** $\gcd(9, 4) = 1 = 1 \cdot 9 + (-2) \cdot 4$.

Proof: By strong induction on $\max(a, b)$. Suppose without loss of generality $a \leq b$.

- If $\max(a, b) = 1$, then must have $b = 1$, $\gcd(a, b) = 1$

 $\circ \gcd(a, b) = 0 \cdot a + 1 \cdot b$.

- If $\max(a, b) > 1$, there are three cases:

 \circ If $a = 0$, then $\gcd(a, b) = b = 0 \cdot a + 1 \cdot b$

 \circ If $a = b$, then $\gcd(a, b) = a = 1 \cdot a + 0 \cdot b$

 \circ If $0 < a < b$, then $\gcd(a, b) = \gcd(a, b - a)$. Moreover, $b = \max(a, b) > \max(a, b - a)$. Thus, by IH, we can compute s, t such that

 $$\gcd(a, b) = \gcd(a, a-b) = sa+t(b-a) = (s-t)a+tb.$$

Note: this computation basically follows the “recipe” of Euclid’s algorithm.
Example

Recall that $\gcd(84, 33) = \gcd(33, 18) = \gcd(18, 15) = \gcd(15, 3) = \gcd(3, 0) = 3$

We work backwards to write 3 as a linear combination of 84 and 33:

$3 = 18 - 15$

[Now 3 is a linear combination of 18 and 15]

$= 18 - (33 - 18)$

$= 2(18) - 33$

[Now 3 is a linear combination of 18 and 33]

$= 2(84 - 2 \times 33)) - 33$

$= 2 \times 84 - 5 \times 33$

[Now 3 is a linear combination of 84 and 33]
Some Consequences

Corollary 2: If \(a \) and \(b \) are relatively prime, then there exist \(s \) and \(t \) such that \(as + bt = 1 \).

Corollary 3: If \(\gcd(a, b) = 1 \) and \(a \mid bc \), then \(a \mid c \).

Proof:

- Exist \(s, t \in \mathbb{Z} \) such that \(sa + tb = 1 \)
- Multiply both sides by \(c \): \(sac + tbc = c \)
- Since \(a \mid bc \), \(a \mid sac + tbc \), so \(a \mid c \)

Corollary 4: If \(p \) is prime and \(p \mid \prod_{i=1}^{n} a_i \), then \(p \mid a_i \) for some \(1 \leq i \leq n \).

Proof: By induction on \(n \):

- If \(n = 1 \): trivial.

Suppose the result holds for \(n \leq N \) and \(p \mid \prod_{i=1}^{N+1} a_i \).

- Note that \(p \mid \prod_{i=1}^{N+1} a_i = (\prod_{i=1}^{N} a_i)a_{N+1} \).
- If \(p \mid a_{N+1} \) we are done.
- If not, \(\gcd(p, a_{N+1}) = 1 \).
- By Corollary 3, \(p \mid \prod_{i=1}^{N} a_i \)
- By the IH, \(p \mid a_i \) for some \(1 \leq i \leq N \).
The Fundamental Theorem of Arithmetic, II

Theorem 3: Every $n > 1$ can be represented uniquely as a product of primes, written in nondecreasing size.

Proof: Still need to prove uniqueness. We do it by strong induction.

- **Base case:** Obvious if $n = 2$.

Inductive step. Suppose OK for $n' < n$.

- Suppose that $n = \Pi_{i=1}^{s} p_i = \Pi_{j=1}^{r} q_j$.
- $p_1 \mid \Pi_{j=1}^{r} q_j$, so by Corollary 4, $p_1 \mid q_j$ for some j.
- But then $p_1 = q_j$, since both p_1 and q_j are prime.
- But then $n/p_1 = p_2 \cdots p_s = q_1 \cdots q_{j-1}q_{j+1} \cdots q_r$
- Result now follows from I.H.
Characterizing the GCD and LCM

Theorem 6: Suppose \(a = \Pi_{i=1}^{n} p_i^{\alpha_i} \) and \(b = \Pi_{i=1}^{n} p_i^{\beta_i} \), where \(p_i \) are primes and \(\alpha_i, \beta_i \in \mathbb{N} \).

- Some \(\alpha_i \)’s, \(\beta_i \)’s could be 0.

Then
\[
\text{gcd}(a, b) = \Pi_{i=1}^{n} p_i^{\min(\alpha_i, \beta_i)}
\]
\[
\text{lcm}(a, b) = \Pi_{i=1}^{n} p_i^{\max(\alpha_i, \beta_i)}
\]

Proof: For gcd, let \(c = \Pi_{i=1}^{n} p_i^{\min(\alpha_i, \beta_i)} \).
Clearly \(c \mid a \) and \(c \mid b \).

- Thus, \(c \) is a common divisor, so \(c \leq \text{gcd}(a, b) \).

If \(q^\gamma \mid \text{gcd}(a, b) \),

- must have \(q \in \{p_1, \ldots, p_n\} \)
 - Otherwise \(q \nmid a \) so \(q \nmid \text{gcd}(a, b) \) (likewise \(b \))

If \(q = p_i, q^\gamma \mid \text{gcd}(a, b) \), must have \(\gamma \leq \min(\alpha_i, \beta_i) \)
 - E.g., if \(\gamma > \alpha_i \), then \(p_i^{\gamma} \nmid a \)

- Thus, \(c \geq \text{gcd}(a, b) \).

Conclusion: \(c = \text{gcd}(a, b) \).
For lcm, let \(d = \prod_{i=1}^{n} p_i^{\max(\alpha_i, \beta_i)} \).

- Clearly \(a \mid d, \ b \mid d \), so \(d \) is a common multiple.
- Thus, \(d \geq \text{lcm}(a, b) \).

But if \(p_i^\delta \mid \text{lcm}(a, b) \), must have \(\delta \geq \max(\alpha_i, \beta_i) \).

- E.g., if \(\delta < \alpha_i \), then \(a \not\mid \text{lcm}(a, b) \).
- Thus, \(d \leq \text{lcm}(a, b) \).

Conclusion: \(d = \text{lcm}(a, b) \).

Example: \(432 = 2^43^3 \), and \(95256 = 2^33^57^2 \), so

- \(\gcd(95256, 432) = 2^33^3 = 216 \)
- \(\text{lcm}(95256, 432) = 2^43^57^2 = 190512 \).

Corollary 5: \(ab = \gcd(a, b) \cdot \text{lcm}(a, b) \)

Proof:

\[
\min(\alpha, \beta) + \max(\alpha, \beta) = \alpha + \beta.
\]

Example: \(4 \cdot 10 = 2 \cdot 20 = \gcd(4, 10) \cdot \text{lcm}(4, 10) \).