An Algorithm for Prime Factorization

Fact: If a is the smallest number >1 that divides n, then a is prime.

Proof: By contradiction. (Left to the reader.)

- A multiset is like a set, except repetitions are allowed - $\{\{2,2,3,3,5\}\}$ is a multiset, not a set

$\mathrm{PF}(n)$: A prime factorization procedure

Input: $n \in N^{+}$
Output: PFS - a multiset of n 's prime factors PFS := \emptyset
for $a=2$ to \sqrt{n} do
if $a \mid n$ then PFS $:=\operatorname{PF}(n / a) \cup\{\{a\}\}$ return PFS if $\mathrm{PFS}=\emptyset$ then PFS $:=\{\{n\}\} \quad[n$ is prime $]$

Example: $\operatorname{PF}(7007)=\{\{7\}\} \cup \operatorname{PF}(1001)$

$$
\begin{aligned}
& =\{\{7,7\}\} \cup \mathrm{PF}(143) \\
& =\{\{7,7,11\}\} \cup \mathrm{PF}(13) \\
& =\{\{7,7,11,13\}\} .
\end{aligned}
$$

The Complexity of Factoring

Algorithm PF runs in exponential time:

- We're checking every number up to \sqrt{n}

Can we do better?

- We don't know.
- Modern-day cryptography implicitly depends on the fact that we can't!

How Many Primes Are There?

Theorem 4: [Euclid] There are infinitely many primes. Proof: By contradiction.

- Suppose that there are only finitely many primes: p_{1}, \ldots, p_{n}.
- Consider $q=p_{1} \times \cdots \times p_{n}+1$
- Clearly $q>p_{1}, \ldots, p_{n}$, so it can't be prime.
- So q must have a prime factor, which must be one of p_{1}, \ldots, p_{n} (since these are the only primes).
- Suppose it is p_{i}.
- Then $p_{i} \mid q$ and $p_{i} \mid p_{1} \times \cdots \times p_{n}$

○ So $p_{i} \mid\left(q-p_{1} \times \cdots \times p_{n}\right)$; i.e., $p_{i} \mid 1$ (Corollary 1$)$

- Contradiction!

Largest currently-known prime (as of 5/04):

- $2^{24036583}-1$: 7235733 digits
- Check www.utm.edu/research/primes

Primes of the form $2^{p}-1$ where p is prime are called Mersenne primes.

- Search for large primes focuses on Mersenne primes

The distribution of primes

There are quite a few primes out there:

- Roughly one in every $\log (n)$ numbers is prime

Formally: let $\pi(n)$ be the number of primes $\leq n$:
Prime Number Theorem Theorem: $\pi(n) \sim n / \log (n)$; that is,

$$
\lim _{n \rightarrow \infty} \pi(n) /(n / \log (n))=1
$$

Why is this important?

- Cryptosystems like RSA use a secret key that is the product of two large (100-digit) primes.
- How do you find two large primes?
- Roughly one of every 100 100-digit numbers is prime - To find a 100-digit prime;
* Keep choosing odd numbers at random
* Check if they are prime (using fast randomized primality test)
* Keep trying until you find one
* Roughly 100 attempts should do it

(Some) Open Problems Involving Primes

- Are there infinitely many Mersenne primes?
- Goldbach's Conjecture: every even number greater than 2 is the sum of two primes.
- E.g., $6=3+3,20=17+3,28=17+11$
- This has been checked out to 6×10^{16} (as of 2003)
- Every sufficiently large integer ($>10^{43,000!}$) is the sum of four primes
- Two prime numbers that differ by two are twin primes
- E.g.: $(3,5),(5,7),(11,13),(17,19),(41,43)$
- also $4,648,619,711,505 \times 2^{60,000} \pm 1$!

Are there infinitely many twin primes?
All these conjectures are believed to be true, but no one has proved them.

Greatest Common Divisor (gcd)

Definition: For $a \in Z$ let $D(a)=\{k \in N: k \mid a\}$

- $D(a)=\{$ divisors of $a\}$.

Claim. $|D(a)|<\infty$ if (and only if) $a \neq 0$.
Proof: If $a \neq 0$ and $k \mid a$, then $0<k<a$.
Definition: For $a, b \in Z, C D(a, b)=D(a) \cap D(b)$ is the set of common divisors of a, b.
Definition: The greatest common divisor of a and b is

$$
\operatorname{gcd}(a, b)=\max (C D(a, b)) .
$$

Examples:

- $\operatorname{gcd}(6,9)=3$
- $\operatorname{gcd}(13,100)=1$
- $\operatorname{gcd}(6,45)=3$

Def.: a and b are relatively prime if $\operatorname{gcd}(a, b)=1$.

- Example: 4 and 9 are relatively prime.
- Two numbers are relatively prime iff they have no common prime factors.
Efficient computation of $\operatorname{gcd}(a, b)$ lies at the heart of commercial cryptography.

Least Common Multiple (lcm)

Definition: The least common multiple of $a, b \in N^{+}$, $\operatorname{lcm}(a, b)$, is the smallest $n \in N^{+}$such that $a \mid n$ and $b \mid n$.

- Formally, $M(a)=\{k a \mid k \in N\}$ - the multiples of a
- Define $C M(a, b)=M(a) \cap M(b)$ - the common multiples of a and b
- $\operatorname{lcm}(a, b)=\min (C M(a, b))$
- Examples: $\operatorname{lcm}(4,9)=36, \operatorname{lcm}(4,10)=20$.

Computing the GCD

There is a method for calculating the gcd that goes back to Euclid:

- Recall: if $n>m$ and q divides both n and m, then q divides $n-m$ and $n+m$.

Therefore $\operatorname{gcd}(n, m)=\operatorname{gcd}(m, n-m)$.

- Proof: Show $C D(m, n)=C D(m, n-m)$; i.e., that q divides both n and m iff q divides both m and $n-m$. (If q divides n and m, then q divides $n-m$ by the argument above. If q divides m and $n-m$, then q divides $m+(n-m)=n$.)
- This allows us to reduce the gcd computation to a simpler case.

We can do even better:

- $\operatorname{gcd}(n, m)=\operatorname{gcd}(m, n-m)=\operatorname{gcd}(m, n-2 m)=\ldots$
- keep going as long as $n-q m \geq 0-\lfloor n / m\rfloor$ steps

Consider $\operatorname{gcd}(6,45)$:

- $\lfloor 45 / 6\rfloor=7$; remainder is $3(45 \equiv 3(\bmod 6))$
- $\operatorname{gcd}(6,45)=\operatorname{gcd}(6,45-7 \times 6)=\operatorname{gcd}(6,3)=3$

We can keep this up this procedure to compute $\operatorname{gcd}\left(n_{1}, n_{2}\right)$:

- If $n_{1} \geq n_{2}$, write n_{1} as $q_{1} n_{2}+r_{1}$, where $0 \leq r_{1}<n_{2}$

$$
\circ q_{1}=\left\lfloor n_{1} / n_{2}\right\rfloor
$$

- $\operatorname{gcd}\left(n_{1}, n_{2}\right)=\operatorname{gcd}\left(r_{1}, n_{2}\right) ; r_{1}=n_{1} \bmod n_{2}$
- Now $r_{1}<n_{2}$, so switch their roles:
- $n_{2}=q_{2} r_{1}+r_{2}$, where $0 \leq r_{2}<r_{1}$
- $\operatorname{gcd}\left(r_{1}, n_{2}\right)=\operatorname{gcd}\left(r_{1}, r_{2}\right)$
- Notice that $\max \left(n_{1}, n_{2}\right)>\max \left(r_{1}, n_{2}\right)>\max \left(r_{1}, r_{2}\right)$
- Keep going until we have a remainder of 0 (i.e., something of the form $\operatorname{gcd}\left(r_{k}, 0\right)$ or $\left(\operatorname{gcd}\left(0, r_{k}\right)\right)$
- This is bound to happen sooner or later

Euclid's Algorithm

Input m, n [m, n natural numbers, $m \geq n$] num $\leftarrow m$; denom $\leftarrow n \quad$ [Initialize $n u m$ and denom] repeat until denom $=0$
$q \leftarrow\lfloor$ num / denom \rfloor
rem \leftarrow num $-(q *$ denom $)[$ num \bmod denom $=$ rem $]$
num \leftarrow denom $\quad[$ New num $]$
denom \leftarrow rem $\quad[$ New denom; note $n u m \geq$ denom $]$ endrepeat
Output $n u m[n u m=\operatorname{gcd}(m, n)]$

Example: $\operatorname{gcd}(84,33)$
Iteration 1: $n u m=84$, denom $=33, q=2$, rem $=18$
Iteration 2: $n u m=33$, denom $=18, q=1$, rem $=15$
Iteration 3: num $=18$, denom $=15, q=1$, rem $=3$
Iteration 4: num $=15$, denom $=3, q=5$, rem $=0$
Iteration 5: num $=3$, denom $=0 \Rightarrow \operatorname{gcd}(84,33)=3$
$\operatorname{gcd}(84,33)=\operatorname{gcd}(33,18)=\operatorname{gcd}(18,15)=\operatorname{gcd}(15,3)=$ $\operatorname{gcd}(3,0)=3$

Euclid's Algorithm: Correctness

How do we know this works?

- We have two loop invariants, which are true each time we start the loop:

$$
\begin{aligned}
& \circ \operatorname{gcd}(m, n)=\operatorname{gcd}(n u m, \text { denom }) \\
& \circ \text { num } \geq \text { denom }
\end{aligned}
$$

- At the end, denom $=0$, so $\operatorname{gcd}($ num, denom $)=$ num .

Euclid's Algorithm: Complexity

Input m, n [m, n natural numbers, $m \geq n$] num $\leftarrow m$; denom $\leftarrow n \quad$ [Initialize $n u m$ and denom] repeat until denom $=0$
$q \leftarrow\lfloor$ num $/$ denom \rfloor
rem \leftarrow num $-(q *$ denom $)$
num \leftarrow denom
denom \leftarrow rem \quad [New denom; note $n u m \geq$ denom $]$ endrepeat
Output num $[n u m=\operatorname{gcd}(m, n)]$

How many times do we go through the loop in the Euclidean algorithm:

- Best case: Easy. Never!
- Average case: Too hard
- Worst case: Can't answer this exactly, but we can get a good upper bound.
- See how fast denom goes down in each iteration.

Claim: After two iterations, denom is halved:

- Recall num $=q *$ denom + rem. Use denom ${ }^{\prime}$ and denom ${ }^{\prime \prime}$ to denote value of denom after 1 and 2 iterations. Two cases:

1. rem \leq denom $/ 2 \Rightarrow$ denom $^{\prime} \leq$ denom $/ 2$ and denom ${ }^{\prime \prime}<$ denom/2.
2. rem $>$ denom $/ 2$. But then num $^{\prime}=$ denom, denom ${ }^{\prime}=$ rem. At next iteration, $q=1$, and denom $^{\prime \prime}=$ rem $^{\prime}=$ num $^{\prime}-$ denom $^{\prime}<$ denom $/ 2$

- How long until denom is ≤ 1 ?
$0<2 \log _{2}(m)$ steps!
- After at most $2 \log _{2}(m)$ steps, denom $=0$.

The Extended Euclidean Algorithm

Theorem 5: For $a, b \in N$, not both 0 , we can compute $s, t \in Z$ such that

$$
\operatorname{gcd}(a, b)=s a+t b .
$$

- Example: $\operatorname{gcd}(9,4)=1=1 \cdot 9+(-2) \cdot 4$.

Proof: By strong induction on $\max (a, b)$. Suppose without loss of generality $a \leq b$.

- If $\max (a, b)=1$, then must have $b=1, \operatorname{gcd}(a, b)=1$ - $\operatorname{gcd}(a, b)=0 \cdot a+1 \cdot b$.
- If $\max (a, b)>1$, there are three cases:
- If $a=0$, then $\operatorname{gcd}(a, b)=b=0 \cdot a+1 \cdot b$
- If $a=b$, then $\operatorname{gcd}(a, b)=a=1 \cdot a+0 \cdot b$
- If $0<a<b$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, b-a)$. Moreover, $b=\max (a, b)>\max (a, b-a)$. Thus, by IH, we can compute s, t such that

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(a, a-b)=s a+t(b-a)=(s-t) a+t b .
$$

Note: this computation basically follows the "recipe" of Euclid's algorithm.

Example

Recall that $\operatorname{gcd}(84,33)=\operatorname{gcd}(33,18)=\operatorname{gcd}(18,15)=$ $\operatorname{gcd}(15,3)=\operatorname{gcd}(3,0)=3$

We work backwards to write 3 as a linear combination of 84 and 33:

$$
\begin{aligned}
3 & =18-15 \\
& \quad[\text { Now } 3 \text { is a linear combination of } 18 \text { and 15] } \\
& =18-(33-18) \\
& =2(18)-33 \\
& {[\text { Now } 3 \text { is a linear combination of } 18 \text { and } 33] } \\
& =2(84-2 \times 33))-33 \\
& =2 \times 84-5 \times 33 \\
& \quad[\text { Now } 3 \text { is a linear combination of } 84 \text { and } 33]
\end{aligned}
$$

Some Consequences

Corollary 2: If a and b are relatively prime, then there exist s and t such that $a s+b t=1$.

Corollary 3: If $\operatorname{gcd}(a, b)=1$ and $a \mid b c$, then $a \mid c$. Proof:

- Exist $s, t \in Z$ such that $s a+t b=1$
- Multiply both sides by $c: s a c+t b c=c$
- Since $a|b c, a| s a c+t b c$, so $a \mid c$

Corollary 4: If p is prime and $p \mid \prod_{i=1}^{n} a_{i}$, then $p \mid a_{i}$ for some $1 \leq i \leq n$.
Proof: By induction on n :

- If $n=1$: trivial.

Suppose the result holds for $n \leq N$ and $p \mid \Pi_{i=1}^{N+1} a_{i}$.

- Note that $p \mid \Pi_{i=1}^{N+1} a_{i}=\left(\Pi_{i=1}^{N} a_{i}\right) a_{N+1}$.
- If $p \mid a_{N+1}$ we are done.
- If not, $\operatorname{gcd}\left(p, a_{N+1}\right)=1$.
- By Corollary 3, $p \mid \Pi_{i=1}^{N} a_{i}$
- By the IH, $p \mid a_{i}$ for some $1 \leq i \leq N$.

The Fundamental Theorem of Arithmetic, II

Theorem 3: Every $n>1$ can be represented uniquely as a product of primes, written in nondecreasing size.
Proof: Still need to prove uniqueness. We do it by strong induction.

- Base case: Obvious if $n=2$.

Inductive step. Suppose OK for $n^{\prime}<n$.

- Suppose that $n=\prod_{i=1}^{s} p_{i}=\prod_{j=1}^{r} q_{j}$.
- $p_{1} \mid \Pi_{j=1}^{r} q_{j}$, so by Corollary $4, p_{1} \mid q_{j}$ for some j.
- But then $p_{1}=q_{j}$, since both p_{1} and q_{j} are prime.
- But then $n / p_{1}=p_{2} \cdots p_{s}=q_{1} \cdots q_{j-1} q_{j+1} \cdots q_{r}$
- Result now follows from I.H.

Characterizing the GCD and LCM

Theorem 6: Suppose $a=\prod_{i=1}^{n} p_{i}^{\alpha_{i}}$ and $b=\prod_{i=1}^{n} p_{i}^{\beta_{i}}$, where p_{i} are primes and $\alpha_{i}, \beta_{i} \in N$.

- Some α_{i} 's, β_{i} 's could be 0 .

Then

$$
\begin{aligned}
& \operatorname{gcd}(a, b)=\prod_{i=1}^{n} p_{i}^{\min \left(\alpha_{i}, \beta_{i}\right)} \\
& \operatorname{lcm}(a, b)=\prod_{i=1}^{n} p_{i}^{\max \left(\alpha_{i}, \beta_{i}\right)}
\end{aligned}
$$

Proof: For gcd, let $c=\prod_{i=1}^{n} p_{i}^{\min \left(\alpha_{i}, \beta_{i}\right)}$.
Clearly $c \mid a$ and $c \mid b$.

- Thus, c is a common divisor, so $c \leq \operatorname{gcd}(a, b)$.

If $q^{\gamma} \mid \operatorname{gcd}(a, b)$,

- must have $q \in\left\{p_{1}, \ldots, p_{n}\right\}$
- Otherwise $q \backslash a$ so $q \backslash \operatorname{gcd}(a, b)$ (likewise b)

If $q=p_{i}, q^{\gamma} \mid \operatorname{gcd}(a, b)$, must have $\gamma \leq \min \left(\alpha_{i}, \beta_{i}\right)$ - E.g., if $\gamma>\alpha_{i}$, then $p_{i}^{\gamma} \nless a$

- Thus, $c \geq \operatorname{gcd}(a, b)$.

Conclusion: $c=\operatorname{gcd}(a, b)$.

For lcm, let $d=\Pi_{i=1}^{n} p_{i}^{\max \left(\alpha_{i}, \beta_{i}\right)}$.

- Clearly $a|d, b| d$, so d is a common multiple.
- Thus, $d \geq \operatorname{lcm}(a, b)$.

But if $p_{i}^{\delta} \mid \operatorname{lcm}(a, b)$, must have $\delta \geq \max \left(\alpha_{i}, \beta_{i}\right)$.

- E.g., if $\delta<\alpha_{i}$, then $a \nmid \operatorname{lcm}(a, b)$.
- Thus, $d \leq \operatorname{lcm}(a, b)$.

Conclusion: $d=\operatorname{lcm}(a, b)$.
Example: $432=2^{4} 3^{3}$, and $95256=2^{3} 3^{5} 7^{2}$, so

- $\operatorname{gcd}(95256,432)=2^{3} 3^{3}=216$
- $\operatorname{lcm}(95256,432)=2^{4} 3^{5} 7^{2}=190512$.

Corollary 5: $a b=\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)$ Proof:

$$
\min (\alpha, \beta)+\max (\alpha, \beta)=\alpha+\beta
$$

Example: $4 \cdot 10=2 \cdot 20=\operatorname{gcd}(4,10) \cdot \operatorname{lcm}(4,10)$.

