
Questions/Complaints About
Homework?

Here’s the procedure for homework questions/complaints:

1. Read the solutions first.

2. Talk to the person who graded it (check initials)

3. If (1) and (2) don’t work, talk to me.

Further comments:

• There’s no statute of limitations on grade changes

◦ although asking questions right away is a good
strategy

• Remember that 10/12 homeworks count. Each one
is roughly worth 50 points, and homework is 35% of
your final grade.

◦ 16 homework points = 1% on your final grade

• Remember we’re grading about 80 homeworks and
graders are not expected to be mind readers. It’s
your problem to write clearly.

• Don’t forget to staple your homework pages together,
add the cover sheet, and put your name on clearly.

◦ I’ll deduct 2 points if that’s not the case
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Back to guessing inductive hypotheses . . .

In general, there is no rule for guessing the right inductive
hypothesis. However, if you have a sequence of numbers

r1, r2, r3, . . .

and want to guess a general expression, here are some
guidelines for trying to find the type of the expression
(exponential, polynomial):

• Compute limn→∞ rn+1/rn

◦ if it looks like limn→∞ rn+1/rn = b /∈ {0, 1}, then
rn probably has the form Abn + · · ·.

◦ You can compute A by computing limn→∞ rn/b
n

◦ Try to compute the form of · · · by considering the
sequence rn − Abn; that is,

r1 − Ab, r2 − Ab2, r3 − Ab3, . . .

• limn→∞ rn+1/rn = 1, then rn is most likely a polyno-
mial.

• limn→∞ rn+1/rn = 0, then rn may have the form
A/bf(n), where f(n)/n → ∞
◦ f(n) could be n log n or n2, for example

Once you have guessed the form of rn, prove that your
guess is right by induction.

2

More examples

Come up with a simple formula for the sequence

1, 5, 13, 41, 121, 365, 1093, 3281, 9841, 29525

Compute limit of rn+1/rn:

5/1 = 5, 13/5 ≈ 2.6, 41/13 ≈ 3.2, 121/41 ≈ 2.95,
. . . , 29525/9841 ≈ 3.000

Guess: limit is 3 (⇒ rn = A3n + ·)
Compute limit of rn/3n:

1/3 ≈ .33, 5/9 ≈ .56, 13/27 ≈ .5, 41/81 ≈ .5,
. . . , 29525/310 ≈ .5000

Guess: limit is 1/2 (⇒ rn = 1
2
3n + · · ·)+

Compute rn − 3n/2:

(1 − 3/2), (5 − 9/2), (13 − 27/2), (41 − 81/2), . . .
= −1

2
, 1

2
,−1

2
, 1

2
, . . .

Guess: general term is 3n/2 + (−1)n/2

Verify (by induction ...)
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One more example

Find a formula for

1

1 · 4 +
1

4 · 7 +
1

7 · 10
+ · · · + 1

(3n − 2)(3n + 1)

Some values:

• r1 = 1/4

• r2 = 1/4 + 1/28 = 8/28 = 2/7

• r3 = 1/4 + 1/28 + 1/70 = (70 + 10 + 4)/280 =
84/280 = 3/10

Conjecture: rn = n/(3n + 1). Let this be P (n).

Basis: P (1) says that r1 = 1/4.

Inductive step:

rn+1 = rn + 1
(3n+1)(3n+4)

= n
3n+1 + 1

(3n+1)(3n+4)

= n(3n+4)+1
(3n+1)(3n+4)

= 3n2+4n+1
(3n+1)(3n+4)

= (n+1)(3n+1)
(3n+1)(3n+4)

= n+1
3n+4
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Faulty Inductions

Part of why I want you to write out your assumptions
carefully is so that you don’t get led into some standard
errors.

Theorem: All women are blondes.

Proof by induction: Let P (n) be the statement: For
any set of n women, if at least one of them is a blonde,
then all of them are.

Basis: Clearly OK.

Inductive step: Assume P (n). Let’s prove P (n + 1).

Given a set W of n + 1 women, one of which is blonde.
Let A and B be two subsets of W , each of which contains
the known blonde, whose union is W .

By the induction hypothesis, each of A and B consists
of all blondes. Thus, so does W . This proves P (n) ⇒
P (n + 1).
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Take W to be the set of women in the world, and let
n = |W |. Since there is clearly at least one blonde in the
world, it follows that all women are blonde!

Where’s the bug?
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Theorem: Every integer > 1 has a unique prime fac-
torization.

[The result is true, but the following proof is not:]

Proof: By strong induction. Let P (n) be the statement
that n has a unique factorization.

Basis: P (2) is clearly true.

Induction step: Assume P (2), . . . , P (n). We prove
P (n+1). If n+1 is prime, we are done. If not, it factors
somehow. Suppose n+1 = rs r, s > 1. By the induction
hypothesis, r has a unique factorization Πipi and s has
a unique prime factorization Πjqj. Thus, ΠipiΠjqj is a
prime factorization of n+1, and since none of the factors
of either piece can be changed, it must be unique.

What’s the flaw??
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Problem: Suppose n + 1 = 36. That is, you’ve proved
that every number up to 36 has a unique factorization.
Now you need to prove it for 36.

36 isn’t prime, but 36 = 3 × 12. By the induction hy-
pothesis, 12 has a unique prime factorization, say p1p2p3.
Thus, 36 = 3p1p2p3.

However, 36 is also 4 × 9. By the induction hypothesis,
4 = q1q2 and 9 = r1r2. Thus, 36 = q1q2r1r2.

How do you know that 3p1p2p3 = q1q2r1r2.
(They do, but it doesn’t follow from the induction hy-
pothesis.)

This is a breakdown error. If you’re trying to show some-
thing is unique, and you break it down (as we broke down
n+1 into r and s) you have to argue that nothing changes
if we break it down a different way. What if n + 1 = tu?

• The actual proof of this result is quite subtle
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Theorem: The sum of the internal angles of a regular
n-gon is 180(n − 2) for n ≥ 3.

Proof: By induction. Let P (n) be the statement of
the theorem. For n = 3, the result was shown in high
school. Assume P (n); let’s prove P (n + 1). Given a
regular (n + 1)-gon, we can lop off one of the corners:

By induction, the sum of the internal angles of the n-gon
is 180(n − 2) degrees; the sum of the internal angles of
the triangle is 180 degrees. Thus, the internal angles of
the original (n + 1)-gon is 180(n − 1).
What’s wrong??

• When you lop off a corner, you don’t get a regular

n-gon.

The fix: Strengthen the induction hypothesis.

• Let P (n) say that the sum of the internal angles of
any n-gon is 180(n − 2).
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Consider 0-1 sequences in which 1’s may not appear con-
secutively, except in the rightmost two positions.

• 010110 is not allowed, but 010011 is

Prove that there are 2n allowed sequences of length n for
n ≥ 1

Why can’t this be right?

“Proof” Let P (n) be the statement of the theorem.

Basis: There are 2 sequences of length 1—0 and 1—and
they’re both allowed.

Inductive step: Assume P (n). Let’s prove P (n + 1).
Take any allowed sequence x of length n. We get a se-
quence of length n + 1 by appending either a 0 or 1 at
the end. In either case, it’s allowed.

• If x ends with a 1, it’s OK, because x1 is allowed to
end with 2 1’s.

Thus, sn+1 = 2sn = 22n = 2n+1.

Where’s the flaw?

• What if x already ends with 2 1’s?

Correct expression involves separating out sequences which
end in 0 and 1 (it’s done in Chapter 5, but I’m not sure
we’ll get to it)
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Inductive Definitions

Example: Define ∑n
k=1 ak inductively (i.e., by induction

on n):

• ∑1
k=1 ak = a1

• ∑n+1
k=1 ak = ∑n

k=1 ak + an+1

The inductive definition avoids the use of · · ·, and thus is
less ambiguous.

Example: An inductive definition of n!:

• 1! = 1

• (n + 1)! = (n + 1)n!

Could even start with 0! = 1.
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Inductive Definitions of Sets

A palindrome is an expression that reads the same back-
wards and forwards:

• Madam I’m Adam

• Able was I ere I saw Elba

What is the set of palindromes over {a, b, c, d}? Two
approaches:

1. The smallest set P such that

(a) P contains a, b, c, d, aa, bb, cc, dd

(b) if x is in P , then so is axa, bxb, cxc, and dxd

2. Define Pn, the palindromes of length n, inductively:

• P1 = {a, b, c, d}
• P2 = {aa, bb, cc, dd}
• Pn+1 = {axa, bxb, cxc, dxd|x ∈ Pn−1}, n ≥ 2

Let P ′ = ∪nPn.
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Theorem: P = P ′. (The two approaches define the
same set.)
Proof: Show P ⊆ P ′ and P ′ ⊆ P .
To see that P ⊆ P ′, it suffices to show that

(a) P ′ contains a, b, c, d, aa, bb, cc, dd

(b) if x is in P ′, then so is axa, bxb, cxc, and dxd

(since P is the least set with these properties).

Clearly P1 ∪ P2 satisfies (1), so P ′ does. And if x ∈ P ′,
then x ∈ Pn for some n, in which case axa, bxb, cxc, and
dxd are all in Pn+2 and hence in P ′. Thus, P ⊆ P ′.

To see that P ′ ⊆ P , we prove by strong induction that
Pn ⊆ P for all n. Let P (n) be the statement that Pn ⊆
P .

Basis: P1, P2 ⊆ P : Obvious.

Suppose P1, . . . , Pn ⊆ P . If n ≥ 2, the fact that Pn+1 ⊆
P follows immediately from (b). (Actually, all we need is
the fact that Pn−1 ⊆ P , which follows from the (strong)
induction hypothesis.)

Thus, P ′ = ∪nPn ⊆ P .
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Recall that the set of palindromes is the smallest set P
such that

(a) P contains a, b, c, d, aa, bb, cc, dd

(b) if x is in P , then so is axa, bxb, cxc, and dxd

“Smallest” is not in terms of cardinality.

• P is guaranteed to be infinite

“Smallest” is in terms of the subset relation.

Here’s a set that satisfies (a) and (b) and isn’t the small-
est:

Define Qn inductively:

• Q1 = {a, b, c, d}
• Q2 = {aa, bb, cc, dd, ab}
• Qn+1 = {axa, bxb, cxc, dxd|x ∈ Qn−1}, n ≥ 2

Let Q = ∪nQn.

It’s easy to see that Q satisfies (a) and (b), but it isn’t
the smallest set to do so.

14

Just a Reminder

(from your friendly sponsor)

What’s (usually) a key step in proving a property of an
algorithm:

Find a loop invariant!

• State clearly what the invariant is

• Prove that it holds (often by induction, since the in-
variant says “On the nth iteration of the loop, prop-
erty P (n) holds”)
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The muddy children puzzle

16



We can prove by induction on k that if k children have
muddy foreheads, they say “yes” on the kth question.
It appears as if the father didn’t tell the children any-
thing they didn’t already know. Yet without the father’s
statement, they could not have deduced anything.
So what was the role of the father’s statement?
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Algorithmic number theory

Number theory used to be viewed as the purest branch
of pure mathematics.

• Now it’s the basis for most modern cryptography.

• Absolutely critical for e-commerce

◦ How do you know your credit card number is safe?

Goal:

• To give you a basic understanding of the mathematics
behind the RSA cryptosystem

◦ Need to understand how prime numbers work
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Division

For a, b ∈ Z, a 6= 0, a divides b if there is some c ∈ Z
such that b = ac.

• Notation: a | b

• Examples: 3 | 9, 3 6 | 7

If a | b, then a is a factor of b, b is a multiple of a.

Theorem 1: If a, b, c ∈ Z, then

1. if a | b and a | c then a | (b + c).

2. If a | b then a | (bc)

3. If a | b and b | c then a | c (divisibility is transitive).

Proof: How do you prove this? Use the definition!

• E.g., if a | b and a | c, then, for some d1 and d2,

b = ad1 and c = ad2.

• That means b + c = a(d1 + d2)

• So a | (b + c).

Other parts: homework.

Corollary 1: If a | b and a | c, then a | (mb + nc) for
any integers m and n.

19

The division algorithm

Theorem 2: For a ∈ Z and d ∈ N , d > 0, there exist
unique q, r ∈ Z such that a = q · d + r and 0 ≤ r < d.

• r is the remainder when a is divided by d

Notation: a mod d = r (read “a mod d is r”)
More Notation: a ≡ b (mod d) (“a” is equiva-
lent/congruent to b mod r)

• a and b have the same remainder when divided by r

• equivalently, r | (a − b)

Example:

• Dividing 101 by 11 gives a quotient of 9 and a remain-
der of 2 (101 ≡ 2 (mod 11); 101 mod 11 = 2).

Proof: Let q = ba/dc and define r = a − q · d.

• So a = q · d + r with q ∈ Z and 0 ≤ r < d (since
q · d ≤ a).

But why are q and d unique?

• Suppose q · d + r = q′ · d + r′ with q′, r′ ∈ Z and
0 ≤ r′ < d.

• Then (q′ − q)d = (r − r′) with −d < r − r′ < d.

• The lhs is divisible by d so r = r′ and we’re done.
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Primes

• If p ∈ N , p > 1 is prime if if its only positive factors
are 1 and p.

• n ∈ N is composite if n > 1 and n is not prime.

◦ If n is composite then a | n for some a ∈ N with
1 < a < n

◦ Can assume that a ≤ √
n.

∗ Proof: By contradiction:
Suppose n = bc, b >

√
n, c >

√
n. But then

bc > n, a contradiction.

Primes: 2, 3, 5, 7, 11, 13, . . .
Composites: 4, 6, 8, 9, . . .
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Primality testing

How can we tell if n ∈ N is prime?

The naive approach: check if k | n for every 1 < k < n.

• But at least 10m−1 numbers are ≤ n, if n has m digits

◦ 1000 numbers less than 1000 (a 4-digit number)

◦ 1,000,000 less than 1,000,000 (a 7-digit number)

So the algorithm is exponential time!

We can do a little better

• Skip the even numbers

• That saves a factor of 2 −→ not good enough

• Try only primes (Sieve of Eratosthenes)

◦ Still doesn’t help much

We can do much better:

• There is a polynomial time randomized algorithm

◦ We will discuss this when we talk about probability

• In 2002, Agarwal, Saxena, and Kayal gave a (non-
probabilistic) polynomial time algorithm

◦ Saxena and Kayal were undergrads in 2002!
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The Fundamental Theorem of
Arithmetic

Theorem 3: Every natural number n > 1 can be
uniquely represented as a product of primes, written in
nondecreasing size.

• Examples: 54 = 2 · 33, 100 = 22 · 52, 15 = 3 · 5.

Proving that that n can be written as a product of primes
is easy (by strong induction):

• Base case: 2 is the product of primes (just 2)

• Inductive step: If n > 2 is prime, we are done. If not,
n = ab.

◦ Must have a < n, b < n.

◦ By I.H., both a and b can be written as a product
of primes

◦ So n is product of primes

Proving uniqueness is harder.

• We’ll do that in a few days . . .
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