
Binary Search: Analysis

Sequential search is terrible for finding a word in a dic-
tionary. Can do much better with random access.

• it’s like playing 20 questions — cut the search space
in half with each question!

Input n [number of words in list]
w1, . . . , wn [alphabetized list]
w [search word]

Algorithm BinSearch

F ← 1; L← n [Initialize range]
i← b(F + L)/2c
repeat until w = wi or F > L

if w < wi then L← i− 1 else F ← i + 1 endif

i← b(F + L)/2c
end repeat

if w = wi then print i else print ‘failure’ endif

How many times do we go through the loop?

• Best case: 0

• Average case: too hard for us

•Worst case: blog2(n)c + 1

◦ After each loop iteration, F − L is halved.
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Methods of Proof

One way of proving things is by induction.

• That’s coming next.

What if you can’t use induction?

Typically you’re trying to prove a statement like “Given
X , prove (or show that) Y ”. This means you have to
prove

X ⇒ Y

In the proof, you’re allowed to assume X , and then show
that Y is true, using X .

• A special case: if there is no X , you just have to prove
Y or true ⇒ Y .

Alternatively, you can do a proof by contradiction: As-
sume that Y is false, and show that X is false.

• This amounts to proving

¬Y ⇒ ¬X
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Example

Theorem n is odd iff n2 is odd, for n ∈ N+.

Proof: We have to show

1. n odd ⇒ n2 odd

2. n2 odd ⇒ n odd

For (1), if n is odd, it is of the form 2k + 1. Hence,

n2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1

Thus, n2 is odd.

For (2), we proceed by contradiction. Suppose n2 is odd
and n is even. Then n = 2k for some k, and n2 = 4k2.
Thus, n2 is even. This is a contradiction. Thus, n must
be odd.
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A Proof By Contradiction

Theorem:
√

2 is irrational.

Proof: By contradiction. Suppose
√

2 is rational. Then√
2 = a/b for some a, b ∈ N+. We can assume that a/b

is in lowest terms.

• Therefore, a and b can’t both be even.

Squaring both sides, we get

2 = a2/b2

Thus, a2 = 2b2, so a2 is even. This means that a must
be even.

Suppose a = 2c. Then a2 = 4c2.

Thus, 4c2 = 2b2, so b2 = 2c2. This means that b2 is even,
and hence so is b.

Contradiction!

Thus,
√

2 must be irrational.
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Induction

This is perhaps the most important technique we’ll learn
for proving things.

Idea: To prove that a statement is true for all natural
numbers, show that it is true for 1 (base case or basis
step) and show that if it is true for n, it is also true for
n + 1 (inductive step).

• The base case does not have to be 1; it could be 0, 2,
3, . . .

• If the base case is k, then you are proving the state-
ment for all n ≥ k.

It is sometimes quite difficult to formulate the statement
to prove.

IN THIS COURSE, I WILL BE VERY FUSSY ABOUT
THE FORMULATION OF THE STATEMENT TO PROVE.
YOU MUST STATE IT VERY CLEARLY. I WILL ALSO
BE PICKY ABOUT THE FORM OF THE INDUC-
TIVE PROOF.

5

Writing Up a Proof by Induction

1. State the hypothesis very clearly:

• Let P (n) be the statement . . . [some statement in-
volving n]

2. The basis step

• P (k) holds because . . . [where k is the base case,
usually 0 or 1]

3. Inductive step

• Assume P (n). We prove P (n+1) holds as follows
. . . Thus, P (n)⇒ P (n + 1).

4. Conclusion

• Thus, we have shown by induction that P (n) holds
for all n ≥ k (where k was what you used for your
basis step). [It’s not necessary to always write the
conclusion explicitly.]
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A Simple Example

Theorem: For all positive integers n,

n∑

k=1
k =

n(n + 1)

2
.

Proof: By induction. Let P (n) be the statement

n∑

k=1
k =

n(n + 1)

2
.

Basis: P (1) asserts that ∑1
k=1 k = 1(1+1)

2 . Since the LHS
and RHS are both 1, this is true.

Inductive step: Assume P (n). We prove P (n + 1).
∑n+1

k=1 k = ∑n
k=1 k + (n + 1)

= n(n+1)
2 + (n + 1)[Induction hypothesis]

= n(n+1)+2(n+1)
2

= (n+1)(n+2)
2

Thus, P (n) implies P (n + 1), so the result is true by
induction.
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Notes:

• You can write
P (n)
= instead of writing “Induction hy-

pothesis” at the end of the line, or you can write
“P (n)” at the end of the line.

◦Whatever you write, make sure it’s clear when
you’re applying the induction hypothesis

• Notice how we rewrite ∑n+1
k=1 k so as to be able to ap-

peal to the induction hypothesis. This is standard
operating procedure.
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Another example

Theorem: (1+x)n ≥ 1+nx for all nonnegative integers
n and all x ≥ −1.

Proof: By induction on n. Let P (n) be the statement
(1 + x)n ≥ 1 + nx.

Basis: P (0) says (1 + x)0 ≥ 1. This is clearly true.

Inductive Step: Assume P (n). We prove P (n + 1).

(1 + x)n+1 = (1 + x)n(1 + x)
≥ (1 + nx)(1 + x)[Induction hypothesis]
= 1 + nx + x + nx2

= 1 + (n + 1)x + nx2

≥ 1 + (n + 1)x

Where are we using the assumption that x ≥ −1?

• In the second line above.

◦ If (1 + x)n > 1 + nx, then
(1 + x)n(1 + x) > (1 + nx)(1 + x) iff x ≥ −1
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Towers of Hanoi

Theorem: It takes 2n− 1 moves to perform H(n, r, s),
for all positive n, and all r, s ∈ {1, 2, 3}.
Proof: Let P (n) be the statement “It takes 2n−1 moves
to perform H(n, r, s) and all r, s ∈ {1, 2, 3}.”
• Note that “for all positive n” is not part of P (n)!

• P (n) is a statement about a particular n.

• If it were part of P (n), what would P (1) be?

Basis: P (1) is immediate: robot(r ← s) is the only move
in H(1, r, s), and 21 − 1 = 1.

Inductive step: Assume P (n). To perform H(n+1, r, s),
we first do H(n, r, 6 − r − s), then robot(r ← s), then
H(n, 6 − r − s, s). Altogether, this takes 2n − 1 + 1 +
2n − 1 = 2n+1 − 1 steps.
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A Matching Lower Bound

Theorem: Any algorithm to move n rings from pole r
to pole s requires at least 2n − 1 steps.

Proof: By induction, taking the statement of the theo-
rem to be P (n).

Basis: Easy: Clearly it requires (at least) 1 step to move
1 ring from pole r to pole s.

Inductive step: Assume P (n). Suppose you have a se-
quence of steps to move n + 1 rings from r to s. There’s
a first time and a last time you move ring n + 1:

• Let k be the first time

• Let k′ be the last time.

• Possibly k = k′ (if you only move ring n + 1 once)

Suppose at step k, you move ring n + 1 from pole r to
pole s′.

• You can’t assume that s′ = s, although this is opti-
mal.
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Key point:

• The top n rings have to be on the third pole, 6−r−s′

• Otherwise, you couldn’t move ring n + 1 from r to s′.

By P (n), it took at least 2n − 1 moves to get the top n
rings to pole 6− r − s′.

At step k′, the last time you moved ring n + 1, suppose
you moved it from pole r′ to s (it has to end up at s).

• the other n rings must be on pole 6− r′ − s.

• By P (n), it takes at least 2n − 1 moves to get them
to ring s (where they have to end up).

So, altogether, there are at least 2(2n− 1) + 1 = 2n+1− 1
moves in your sequence:

• at least 2n − 1 moves before step k

• at least 2n − 1 moves after step k′

• step k itself.

If course, if k 6= k′ (that is, if you move ring n + 1 more
than once) there are even more moves in your sequence.
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Strong Induction

Sometimes when you’re proving P (n + 1), you want to
be able to use P (j) for j ≤ n, not just P (n). You can
do this with strong induction.

1. Let P (n) be the statement . . . [some statement involv-
ing n]

2. The basis step

• P (k) holds because . . . [where k is the base case,
usually 0 or 1]

3. Inductive step

• Assume P (k), . . . , P (n) holds. We show
P (n + 1) holds as follows . . .

Although strong induction looks stronger than induction,
it’s not. Anything you can do with strong induction,
you can also do with regular induction, by appropriately
modifying the induction hypothesis.

• If P (n) is the statement you’re trying to prove by
strong induction, let P ′(n) be the statement P (1), . . . , P (n)
hold. Proving P ′(n) by regular induction is the same
as proving P (n) by strong induction.
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An example using strong induction

Theorem: Any item costing n > 7 kopecks can be
bought using only 3-kopeck and 5-kopeck coins.

Proof: Using strong induction. Let P (n) be the state-
ment that n kopecks can be paid using 3-kopeck and 5-
kopeck coins, for n ≥ 8.

Basis: P (8) is clearly true since 8 = 3 + 5.

Inductive step: Assume P (8), . . . , P (n) is true. We
want to show P (n + 1). If n + 1 is 9 or 10, then it’s
easy to see that there’s no problem (P (9) is true since
9 = 3 + 3 + 3, and P (10) is true since 10 = 5 + 5).
Otherwise, note that (n + 1) − 3 = n − 2 ≥ 8. Thus,
P (n − 2) is true, using the induction hypothesis. This
means we can use 3- and 5-kopeck coins to pay for some-
thing costing n−2 kopecks. One more 3-kopeck coin pays
for something costing n + 1 kopecks.
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Binary Search

Theorem: Binary search takes at most blog2(n)c + 1
loop iterations on a list of n items.

Proof: By strong induction. Let P (n) be the statement
that if L − F = n ≥ 0, then we go through the loop at
most blog2(L + 1− F )c + 1 times.

Basis: If L − F = 0, then we go through the loop at
most once (0 times if the w = wi is actually on the list),
and log2(1) + 1 = 1.

Inductive step: Assume P (0), . . . , P (n). If L − F =
n + 1, then either w = wb(F+L)/2c (in which case we
quit), or (a) w < wb(F+L)/2c or (b) w > wb(F+L)/2c. Let
L′, F ′ be values of L and F on the next iteration.

In case (a), L′ = b(F + L)/2c − 1, F ′ = F , so

L′ + 1− F ′ = b(F + L)/2c − F = b(L− F )/2c
In case (b) F ′ = b(F + L)/2c + 1, L′ = L, so

L′ + 1− F ′ = L− b(F + L)/2c = d(L− F )/2e
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Either way, by strong induction, it takes at most

1 + blog2(d(L− F )/2e)c + 1

times through the loop. (One more than it takes starting
at (L′, F ′).)

A fact about the floor function:

• 1 + bxc = b1 + xc for all x ∈ R

A fact about logs:

• 1 + log2(x/2) = 1 + log2(x)− log2(2) = log2(x)

Therefore:

1 + blog2(d(L− F )/2e)c + 1
≤ 1 + blog2((L + 1− F )/2)c + 1
= b1 + log2(L + 1− F )/2)c + 1
= blog2(L + 1− F ))c + 1

This is what we wanted to prove!
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Bubble Sort

Suppose we wanted to sort n items. Here’s one way to
do it:

Input n [number of items to be sorted]
w1, . . . , wn [items]

Algorithm BubbleSort

for i = 1 to n− 1
for j = 1 to n− i

if wj > wj+1 then switch(wj, wj+1) endif

endfor

endfor

Why is this right:

• Intuitively, because highest elements “bubble up” to
the top

How many comparisons?

• Best case, worst case, average case all the same:

◦ (n− 1) + (n− 2) + · · · + 1 = n(n− 1)/2
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Proving Bubble Sort Correct

We want to show that the algorithm is correct by induc-
tion. What’s the statement of the induction?

P (k) is the statement that after k iterations of the outer
loop, wn−k+1, . . . , wn are the k highest items, sorted in
the right order.

Basis: How do we prove P (1)? By a nested induction!

This time, take Q(l) to be the statement that after l iter-
ations of the inner loop, wl+1 is higher than {w1, . . . , wl}.
Basis: Q(1) holds because after the first iteration of the
inner loop, w2 > w1 (thanks to the switch statement).

Inductive step: After l iterations, the algorithm guar-
antees that wl+1 > wl. Using the induction hypothesis,
wl+1 is also higher than {w1, . . . , wl−1}.
Q(n− 1) implies P (1), so we’re done with the base case
of the main induction.

[Note: For a really careful proof, we need better notation
(for value of wl before and after the switch).]

Inductive step (for main induction): Assume P (k). By
the subinduction, after n − k − 1 iterations of the in-
ner loop, wn−k is alphabetically after {w1, . . . , wn−(k+1)}.
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Combined with P (k), this tells us wn−k, . . . , wn are the
k + 1 highest elements. This proves P (k + 1).
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How to Guess What to Prove

Sometimes formulating P (n) is straightforward; some-
times it’s not. This is what to do:

• Compute the result in some specific cases

• Conjecture a generalization based on these cases

• Prove the correctness of your conjecture (by induc-
tion)
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Example

Suppose a1 = 1 and an = adn/2e + abn/2c for n > 1. Find
an explicit formula for an.

Try to see the pattern:

• a1 = 1

• a2 = a1 + a1 = 1 + 1 = 2

• a3 = a2 + a1 = 2 + 1 = 3

• a4 = a2 + a2 = 2 + 2 = 4

Suppose we modify the example. Now a1 = 3 and an =
adn/2e + abn/2c for n > 1. What’s the pattern?

• a1 = 3

• a2 = a1 + a1 = 3 + 3 = 6

• a3 = a2 + a1 = 6 + 3 = 9

• a4 = a2 + a2 = 6 + 6 = 12

an = 3n!
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Theorem: If a1 = k and an = adn/2e+abn/2c for n > 1,
then an = kn for n ≥ 1.

Proof: By strong induction. Let P (n) be the statement
that an = kn.

Basis: P (1) says that a1 = k, which is true by hypothe-
sis.

Inductive step: Assume P (1), . . . , P (n); prove P (n+1).

an+1 = ad(n+1)/2e + ab(n+1)/2c
= kd(n + 1)/2e + kb(n + 1)/2c[Induction hypothesis]
= k(d(n + 1)/2e + b(n + 1)/2c)
= k(n + 1)

We used the fact that dn/2e + bn/2c = n for all n (in
particular, for n + 1). To see this, consider two cases: n
is odd and n is even.

• if n is even, dn/2e + bn/2c = n/2 + n/2 = n

• if n is odd, suppose n = 2k + 1

◦ dn/2e + bn/2c = (k + 1) + k = 2k + 1 = n

This proof has a (small) gap:

•We should check that d(n + 1)/2e ≤ n
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