Binary Search: Analysis

Sequential search is terrible for finding a word in a dic-
tionary. Can do much better with random access.

e it’s like playing 20 questions — cut the search space
in half with each question!

Input n [number of words in list]
Wy, ..., Wy, [alphabetized list]
w [search word]
Algorithm BinSearch
F—1L<n [Initialize range]

i — L(F+1)/2

repeat until w =w; or F > L
if w<w; then L «— i —1 else F +— i + 1 endif
i — (F+1L)/2]

end repeat

if w = w; then print ¢ else print ‘failure’ endif

How many times do we go through the loop?
e Best case: 0
e Average case: too hard for us
o Worst case: [logy(n)| + 1
o After each loop iteration, F' — L is halved.
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Example

Theorem n is odd iff n? is odd, for n € N*.
Proof: We have to show
1. n odd = n? odd
2. n% odd = n odd
For (1), if n is odd, it is of the form 2k + 1. Hence,
n? = 4k* + 4k +1 = 2(2k* + 2k) + 1
Thus, n? is odd.

For (2), we proceed by contradiction. Suppose n? is odd
and n is even. Then n = 2k for some k, and n? = 4k2.
Thus, n? is even. This is a contradiction. Thus, n must

be odd.

Methods of Proof

One way of proving things is by induction.
e That’s coming next.
What if you can’t use induction?

Typically you're trying to prove a statement like “Given
X, prove (or show that) Y. This means you have to

prove
X=Y

In the proof, you're allowed to assume X, and then show
that Y is true, using X.

e A special case: if there is no X, you just have to prove
Y or true =Y.

Alternatively, you can do a proof by contradiction: As-
sume that Y is false, and show that X is false.

e This amounts to proving

Y = =X

A Proof By Contradiction

Theorem: /2 is irrational.

Proof: By contradiction. Suppose v/2 is rational. Then
V2 = a/b for some a,b € N*. We can assume that a/b
is in lowest terms.
e Therefore, a and b can’t both be even.
Squaring both sides, we get
2=a*/b?
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Thus, a®> = 2b%, so a” is even. This means that ¢ must

be even.
Suppose a = 2¢. Then a® = 4¢2.

Thus, 4c? = 2b%, so b> = 2¢2. This means that b? is even,
and hence so is b.

Contradiction!

Thus, /2 must be irrational.



Induction

This is perhaps the most important technique we’ll learn
for proving things.

Idea: To prove that a statement is true for all natural
numbers, show that it is true for 1 (base case or basis
step) and show that if it is true for n, it is also true for
n+ 1 (inductive step).

e The base case does not have to be 1; it could be 0, 2,

3, ...

o If the base case is k, then you are proving the state-
ment for all n > k.

It is sometimes quite difficult to formulate the statement
to prove.

IN THIS COURSE, I WILL BE VERY FUSSY ABOUT

THE FORMULATION OF THE STATEMENT TO PROVE.

YOU MUST STATE IT VERY CLEARLY. I WILL ALSO
BE PICKY ABOUT THE FORM OF THE INDUC-
TIVE PROOF.

A Simple Example

Theorem: For all positive integers n,
& n(n + 1)7
k=1 2

Proof: By induction. Let P(n) be the statement

& n(n+1).
k=1 2

Basis: P(1) asserts that >i_, k = w Since the LHS
and RHS are both 1, this is true.

Inductive step: Assume P(n). We prove P(n + 1).

Sk =7 k+(n+1)

= M + (n + 1)[Induction hypothesis]

_ n(n+1)+2(n+1

2
_ (n+1)(n+2
- 2

Thus, P(n) implies P(n + 1), so the result is true by
induction.

Writing Up a Proof by Induction

1. State the hypothesis very clearly:

e Let P(n) be the statement . .. [some statement in-
volving n]

2. The basis step

e P(k) holds because ...[where k is the base case,
usually 0 or 1]

3. Inductive step

e Assume P(n). We prove P(n+ 1) holds as follows
... Thus, P(n) = P(n+1).

4. Conclusion

e Thus, we have shown by induction that P(n) holds
for all n > k (where k was what you used for your
basis step). [It’s not necessary to always write the
conclusion explicitly.]

Notes:

o You can write ") instead of writing “Induction hy-

pothesis” at the end of the line, or you can write
“P(n)” at the end of the line.

o Whatever you write, make sure it’s clear when
you're applying the induction hypothesis

e Notice how we rewrite >771 k so as to be able to ap-

peal to the induction hypothesis. This is standard
operating procedure.



Another example

Theorem: (1+z)" > 1+nx for all nonnegative integers
nand all x > —1.

Proof: By induction on n. Let P(n) be the statement
(1+2z)" > 1+ nz.

Basis: P(0) says (14 2)° > 1. This is clearly true.
Inductive Step: Assume P(n). We prove P(n + 1).

(I+a)* =(1+2)"(1+x)
> (1 + nz)(1 + z)[Induction hypothesis]
=1+nz+x+na’
=1+ (n+ 1)z + na?
>1+(n+1)z

Where are we using the assumption that x > —17
e In the second line above.

oIf (14 )" > 1+ na, then
I+z)"1+z)>Q+nz)(l+az)iff x > -1

A Matching Lower Bound

Theorem: Any algorithm to move n rings from pole r
to pole s requires at least 2" — 1 steps.

Proof: By induction, taking the statement of the theo-
rem to be P(n).

Basis: Fasy: Clearly it requires (at least) 1 step to move
1 ring from pole 7 to pole s.

Inductive step: Assume P(n). Suppose you have a se-
quence of steps to move n + 1 rings from r to s. There’s
a first time and a last time you move ring n + 1:

e Let k be the first time
e Let &' be the last time.
e Possibly k = &’ (if you only move ring n + 1 once)

Suppose at step k, you move ring n + 1 from pole r to
pole s'.

e You can’t assume that s’ = s, although this is opti-
mal.
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Towers of Hanoi

Theorem: It takes 2" — 1 moves to perform H(n,r,s)
for all positive n, and all r, s € {1,2,3}.

)

Proof: Let P(n) be the statement “It takes 2" —1 moves
to perform H(n,r,s) and all r, s € {1,2,3}.”

e Note that “for all positive n” is not part of P(n)!

e P(n) is a statement about a particular n.

o If it were part of P(n), what would P(1) be?
Basis: P(1) is immediate: robot(r «— s) is the only move
in H(1,7r,8), and 2! — 1 = 1.

Inductive step: Assume P(n). To perform H(n+1,r, s),
we first do H(n,r,6 — r — s), then robot(r < s), then
H(n,6 —r — s,s). Altogether, this takes 2" — 14+ 1 +
o — 1 =27+ _ 1 steps.

Key point:
e The top n rings have to be on the third pole, 6 —7 — &’
e Otherwise, you couldn’t move ring n+ 1 from r to s’

By P(n), it took at least 2" — 1 moves to get the top n

rings to pole 6 — r — 5.

At step K/, the last time you moved ring n + 1, suppose
you moved it from pole 7’ to s (it has to end up at s).

e the other n rings must be on pole 6 — 1/ — s.

e By P(n), it takes at least 2" — 1 moves to get them
to ring s (where they have to end up).

So, altogether, there are at least 2(2" — 1) +1 = 2" —1
moves in your sequence:

e at least 2" — 1 moves before step k
e at least 2" — 1 moves after step &’
e step k itself.

If course, if k # k' (that is, if you move ring n + 1 more
than once) there are even more moves in your sequence.
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Strong Induction

Sometimes when you're proving P(n + 1), you want to
be able to use P(j) for j < n, not just P(n). You can
do this with strong induction.

L. Let P(n) be the statement . . . [some statement involv-
ing n
2. The basis step

e P(k) holds because ... [where k is the base case,
usually 0 or 1]

3. Inductive step
e Assume P(k),..., P(n) holds. We show
P(n+ 1) holds as follows ...

Although strong induction looks stronger than induction,
it’s not. Anything you can do with strong induction,
you can also do with regular induction, by appropriately
modifying the induction hypothesis.

o If P(n) is the statement you're trying to prove by

strong induction, let P'(n) be the statement P(1), ..., P(n)

hold. Proving P’(n) by regular induction is the same
as proving P(n) by strong induction.

Binary Search

Theorem: Binary search takes at most |logy(n)] + 1
loop iterations on a list of n items.

Proof: By strong induction. Let P(n) be the statement
that if L — F' = n > 0, then we go through the loop at
most [logy(L +1— F)| + 1 times.

Basis: If L — F = 0, then we go through the loop at
most once (0 times if the w = w; is actually on the list),
and logy(1) + 1 = 1.

Inductive step: Assume P(0),...,P(n). If L — F =
n + 1, then either w = w|(pyr)2) (in which case we
quit), or (a) w < w{(pyr)/2) or (b) w > w|pir)/). Let
L', F" be values of L and F' on the next iteration.

Incase (a), L' = [(F+L)/2| — 1, F' = F, so
L'+1-F =|(F+L))2|-F=|(L-F)/2]

Incase (b) F/' = [(F+L)/2|+1,L'=L,so
L'+1-F =L—-|[(F+L)/2)=[(L-F)/2]
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An example using strong induction

Theorem: Any item costing n > 7 kopecks can be
bought using only 3-kopeck and 5-kopeck coins.

Proof: Using strong induction. Let P(n) be the state-
ment that n kopecks can be paid using 3-kopeck and 5-
kopeck coins, for n > 8.

Basis: P(8) is clearly true since 8 = 3 + 5.

Inductive step: Assume P(8),...,P(n) is true. We
want to show P(n +1). If n+11is 9 or 10, then it’s
easy to see that there’s no problem (P(9) is true since
9 = 3+ 3+ 3, and P(10) is true since 10 = 5 + 5).
Otherwise, note that (n+ 1) =3 =n —2 > 8. Thus,
P(n — 2) is true, using the induction hypothesis. This
means we can use 3- and 5-kopeck coins to pay for some-
thing costing n—2 kopecks. One more 3-kopeck coin pays
for something costing n + 1 kopecks.

Either way, by strong induction, it takes at most
1+ [logy([(L — F)/2])] +1

times through the loop. (One more than it takes starting
at (L', F").)
A fact about the floor function:

ol+|z]=|1+z]forallze R
A fact about logs:

o 1 +logy(z/2) = 14 logy(x) — logy(2) = logy(z)
Therefore:

1+ logy([(L — F)/2])] +1
T+ [logo((L+1—F)/2)] +1
[14+1logo(L+1—-F)/2)| +1
logoy(L+1—F))| +1

This is what we wanted to prove!

[ IA
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Bubble Sort

Suppose we wanted to sort n items. Here’s one way to
do it:

Input n [number of items to be sorted]
wy, ..., Wy, [items]

Algorithm BubbleSort
fori=1ton—1
forj=1ton—1
if w; > w;; then switch(w;, wj41) endif
endfor
endfor

Why is this right:
e Intuitively, because highest elements “bubble up” to
the top
How many comparisons?
e Best case, worst case, average case all the same:

on—1)+n—-2)+---+1=n(n—1)/2

Combined with P(k), this tells us wy,_y, ..., w, are the
k + 1 highest elements. This proves P(k + 1).
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Proving Bubble Sort Correct

We want to show that the algorithm is correct by induc-
tion. What’s the statement of the induction?

P(k) is the statement that after k iterations of the outer
loop, wy—k41,-..,w, are the k highest items, sorted in
the right order.

Basis: How do we prove P(1)? By a nested induction!

This time, take Q(I) to be the statement that after { iter-
ations of the inner loop, wj1 is higher than {wy, ..., w}.

Basis: (1) holds because after the first iteration of the
inner loop, wy > wy (thanks to the switch statement).

Inductive step: After [ iterations, the algorithm guar-
antees that w1 > w;. Using the induction hypothesis,
wy+ is also higher than {wy, ..., w1}

Q(n — 1) implies P(1), so we're done with the base case
of the main induction.

[Note: For areally careful proof, we need better notation
(for value of w; before and after the switch).]

Inductive step (for main induction): Assume P(k). By
the subinduction, after n — k — 1 iterations of the in-
ner loop, w;, . is alphabetically after {w, ..., w,_ (1)}
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How to Guess What to Prove

Sometimes formulating P(n) is straightforward; some-
times it’s not. This is what to do:

e Compute the result in some specific cases
e Conjecture a generalization based on these cases

e Prove the correctness of your conjecture (by induc-
tion)
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Example

Suppose a; = 1 and a,, = ap,/2) + a|n2) for n > 1. Find
an explicit formula for a,,.

Try to see the pattern:

eaq; =1

ey =a1+a=1+1=2
eas=ays+a1=2+1=3
eas=ay+a=2+2=14

Suppose we modify the example. Now a; = 3 and a,, =
A[n/2] + @|py2) for n > 1. What’s the pattern?

ea; =3

eas=a1+a;1=3+3=6
saz=ay+a;=6+3=9
ea,=ay+a,=06+6=12

a, = 3n!
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Theorem: If a; = k and a, = af,2) + a2 forn > 1,
then a,, = kn forn > 1.

Proof: By strong induction. Let P(n) be the statement
that a,, = kn.

Basis: P(1) says that a; = k, which is true by hypothe-
sis.

Inductive step: Assume P(1),. .., P(n); prove P(n+1).

Upi1 = Qf(pe1)/2] T Q| (n+1)/2]

=k[(n+1)/2] + k|(n + 1)/2][Induction hypothesis]

=k([(n+1)/2] + [(n+1)/2])
=k(n+1)

We used the fact that [n/2] + [n/2] = n for all n (in
particular, for n + 1). To see this, consider two cases: n
is odd and n is even.

e if niseven, [n/2]+ [n/2| =n/2+n/2=n
e if n is odd, suppose n = 2k + 1
o[n/2]+|n/2]=(kk+1)+k=2k+1=n
This proof has a (small) gap:
e We should check that [(n+1)/2] <n
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