
What’s It All About?

• Continuous mathematics—calculus—considers objects
that vary continuously

◦ distance from the wall

• Discrete mathematics considers discrete objects, that
come in discrete bundles

◦ number of babies: can’t have 1.2

The mathematical techniques for discrete mathematics
differ from those for continuous mathematics:

• counting/combinatorics

• number theory

• probability

• logic

We’ll be studying these techniques in this course.

1

Why is it computer science?

This is basically a mathematics course:

• no programming

• lots of theorems to prove

So why is it computer science?

Discrete mathematics is the mathematics underlying al-
most all of computer science:

• Designing high-speed networks

• Finding good algorithms for sorting

• Doing good web searches

• Analysis of algorithms

• Proving algorithms correct

2

This Course

We will be focusing on:

• Tools for discrete mathematics:

◦ computational number theory (handouts)

∗ the mathematics behind the RSA cryptosystems

◦ counting/combinatorics (Chapter 4)

◦ probability (Chapter 6)

∗ randomized algorithms for primality testing, rout-
ing

◦ logic (Chapter 7)

∗ how do you prove a program is correct

• Tools for proving things:

◦ induction (Chapter 2)

◦ (to a lesser extent) recursion

First, some background you’ll need but may not have . . .

3

Sets

You need to be comfortable with set notation:

S = {m|2 ≤ m ≤ 100,m is an integer}
S is

the set of
all m

such that
m is between 2 and 100

and
m is an integer.

4

Important Sets

(More notation you need to know and love . . .)

• N (occasionally IN): the nonnegative integers {0, 1, 2, 3, . . .}
• N+: the positive integers {1, 2, 3, . . .}
• Z: all integers {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
• Q: the rational numbers {a/b : a, b ∈ Z, b 6= 0}
• R: the real numbers

• Q+, R+: the positive rationals/reals

5

Set Notation

• |S| = cardinality of (number of elements in) S

◦ |{a, b, c}| = 3

• Subset: A ⊂ B if every element of A is an element
of B

◦ Note: Lots of people (including me, but not the
authors of the text) usually write A ⊂ B only if
A is a strict or proper subset of B (i.e., A 6= B).
I write A ⊆ B if A = B is possible.

• Power set: P(S) is the set of all subsets of S (some-
times denoted 2S).

◦ E.g., P({1, 2, 3}) =
{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
◦ |P(S)| = 2|S|

6

Set Operations

• Union: S ∪ T is the set of all elements in S or T

◦ S ∪ T = {x|x ∈ S or x ∈ T}
◦ {1, 2, 3} ∪ {3, 4, 5} = {1, 2, 3, 4, 5}

• Intersection: S∩T is the set of all elements in both
S and T

◦ S ∩ T = {x|x ∈ S, x ∈ T}
◦ {1, 2, 3} ∩ {3, 4, 5} = {3}

• Set Difference: S − T is the set of all elements in
S not in T

◦ S − T = {x|x ∈ S, x /∈ T}
◦ {3, 4, 5} − {1, 2, 3} = {4, 5}

• Complementation: S is the set of elements not in
S

◦What is {1, 2, 3}?
◦ Complementation doesn’t make sense unless there

is a universe, the set of elements we want to con-
sider.

◦ If U is the universe, S = {x|x ∈ U, x /∈ S}
◦ S = U − S.

7

Venn Diagrams

Sometimes a picture is worth a thousand words (at least
if we don’t have too many sets involved).

8

A Connection

Lemma: For all sets S and T , we have

S = (S ∩ T) ∪ (S − T)

Proof: We’ll show (1) S ⊂ (S ∩ T) ∪ (S − T) and (2)
(S ∩ T) ∪ (S − T) ⊂ S.

For (1), suppose x ∈ S. Either
(a) x ∈ T or (b) x /∈ T .

If (a) holds, then x ∈ S ∩ T .

If (b) holds, then x ∈ S − T .

In either case, x ∈ (S ∩ T) ∪ (S − T).

Since this is true for all x ∈ S, we have (1).

For (2), suppose x ∈ (S ∩T)∪ (S−T). Thus, either (a)
x ∈ (S ∩ T) or x ∈ (S − T). Either way, x ∈ S.

Since this is true for all x ∈ (S ∩ T) ∪ (S − T), we have
(2).

9

Two Important Morals

1. One way to show S = T is to show S ⊂ T and T ⊂ S.

2. One way to show S ⊂ T is to show that for every
x ∈ S, x is also in T .

10

Relations

• Cartesian product:
S × T = {(s, t) : s ∈ S, t ∈ T}
◦ {1, 2, 3} × {3, 4} =
{(1, 3), (2, 3), (3, 3), (1, 4), (2, 4), (3, 4)}
◦ |S × T | = |S| × |T |.

• A relation on S and T (or, on S × T) is a subset of
S × T

• A relation on S is a subset of S × S

◦ Taller than is a relation on people: (Joe,Sam) is
in the Taller than relation if Joe is Taller than Sam

◦ Larger than is a relation on R:

L = {(x, y)|x, y ∈ R, x > y}
◦ Divisibility is a relation on N :

D = {(x, y)|x, y ∈ N, x|y}

11

Reflexivity, Symmetry, Transitivity

• A relation R on S is reflexive if (x, x) ∈ R for all
x ∈ S.

◦ ≤ is reflexive; < is not

• A relation R on S is symmetric if (x, y) ∈ R implies
(y, x) ∈ R.

◦ “sibling-of” is symmetric (what about “sister of”)

◦ ≤ is not symmetric

• A relation R on S is transitive if (x, y) ∈ R and
(y, z) ∈ R implies (x, z) ∈ R.

◦ ≤, <, ≥, > are all transitive;

◦ “parent-of” is not transitive; “ancestor-of” is

Pictorially, we have:

12

Transitive Closure

[[NOT DISCUSSED ENOUGH IN THE TEXT]]

The transitive closure of a relation R is the least relation
R∗ such that

1. R ⊂ R∗

2. R∗ is transitive (so that if (u, v), (v, w) ∈ R∗, then so
is (u,w)).

Example: Suppose R = {(1, 2), (2, 3), (1, 4)}.
• R∗ = {(1, 2), (1, 3), (2, 3), (1, 4)}
• we need to add (1, 3), because (1, 2), (2, 3) ∈ R

Note that we don’t need to add (2,4).

• If (2,1), (1,4) were in R, then we’d need (2,4)

• (1,2), (1,4) doesn’t force us to add anything (it doesn’t
fit the “pattern” of transitivity.

Note that if R is already transitive, then R∗ = R.

13

Equivalence Relations

• A relation R is an equivalence relation if it is reflex-
ive, symmetric, and transitive

◦ = is an equivalence relation

◦ Parity is an equivalence relation on N ;
(x, y) ∈ Parity if x− y is even

14

Functions

We think of a function f : S → T as providing a mapping
from S to T . But . . .

Formally, a function is a relation R on S×T such that for
each s ∈ S, there is a unique t ∈ T such that (s, t) ∈ R.

If f : S → T , then S is the domain of f , T is the range;
{y : f(x) = y for some x ∈ S} is the image.

15

We often think of a function as being characterized by an
algebraic formula

• y = 3x− 2 characterizes f(x) = 3x− 2.

It ain’t necessarily so.

• Some formulas don’t characterize functions:

◦ x2 + y2 = 1 defines a circle; no unique y for each x

• Some functions can’t be characterized by algebraic
formulas

◦ f(n) =

0 if n is even
1 if n is odd

16

Function Terminology

Suppose f : S → T

• f is onto (or surjective) if, for each t ∈ T , there is
some s ∈ S such that f(s) = t.

◦ if f : R+ → R+, f(x) = x2, then f is onto

◦ if f : R→ R, f(x) = x2, then f is not onto

• f is one-to-one (1-1, injective) if it is not the case
that s 6= s′ and f(s) = f(s′).

◦ if f : R+ → R+, f(x) = x2, then f is 1-1

◦ if f : R→ R, f(x) = x2, then f is not 1-1.

17

• a function is bijective if it is 1-1 and onto.

◦ if f : R+ → R+, f(x) = x2, then f is bijective

◦ if f : R→ R, f(x) = x2, then f is not bijective.

If f : S → T is bijective, then |S| = |T |.

18

Inverse Functions

If f : S → T , then f−1 maps an element in the range of
f to all the elements that are mapped to it by f .

f−1(t) = {s|f(s) = t}

• if f(2) = 3, then 2 ∈ f−1(3).

f−1 is not a function from range(f) to S.

It is a function if f is one-to-one.

• In this case, f−1(f(x)) = x.

19

Functions You Should Know
(and Love)

• Absolute value: Domain = R; Range = {0} ∪R+

|x| =

x if x ≥ 0
−x if x < 0

◦ |3| = | − 3| = 3

• Floor function: Domain = R; Range = Z

bxc = largest integer not greater than x

◦ b3.2c = 3; b
√

3c = 1; b−2.5c = −3

• Ceiling function: Domain = R; Range = Z

dxe = smallest integer not less than x

◦ d3.2e = 4; d
√

3e = 2; d−2.5e = −2

• Factorial function: Domain = Range = N

n! = n(n− 1)(n− 2)...3× 2× 1

◦ 5! = 5× 4× 3× 2× 1 = 120

◦ By convention, 0! = 1

20

Exponents

Exponential with base a: Domain = R, Range=R+

f(x) = ax

• Note: a, the base, is fixed; x varies

• You probably know: an = a× · · · × a (n times)

How do we define f(x) if x is not a positive integer?

•Want: (1) ax+y = axay; (2) a1 = a

This means

• a2 = a1+1 = a1a1 = a× a

• a3 = a2+1 = a2a1 = a× a× a

• . . .

• an = a× . . .× a (n times)

We get more:

• a = a1 = a1+0 = a× a0

◦ Therefore a0 = 1

• 1 = a0 = ab+(−b) = ab × a−b

◦ Therefore a−b = 1/ab

21

• a = a1 = a
1
2+1

2 = a
1
2 × a

1
2 = (a

1
2)2

◦ Therefore a
1
2 =
√

a

• Similar arguments show that a
1
k = k
√

a

• amx = ax × · · · × ax(m times) = (ax)m

◦ Thus, a
m
n = (a

1
n)m = (n

√
a)m.

This determines ax for all x rational. The rest follows by
continuity.

22

Computing an quickly

What’s the best way to compute a1000?

One way: multiply a× a× a× a . . .

• This requires 999 multiplications.

Can we do better?
How many multiplications are needed to compute:

• a2

• a4

• a8

• a16

• . . .

Write 1000 in binary: 1111101000

• How many multiplications are needed to calculate a1000?

23

Logarithms

Logarithm base a: Domain = R+; Range = R

y = loga(x)⇔ ay = x

• log2(8) = 3; log2(16) = 4; 3 < log2(15) < 4

The key properties of the log function follow from those
for the exponential:

1. loga(1) = 0 (because a0 = 1)

2. loga(a) = 1 (because a1 = a)

3. loga(xy) = loga(x) + loga(y)

Proof: Suppose loga(x) = z1 and loga(y) = z2.

Then az1 = x and az2 = y.

Therefore xy = az1 × az2 = az1+z2.

Thus loga(xy) = z1 + z2 = loga(x) + loga(y).

4. loga(x
r) = r loga(x)

5. loga(1/x) = − loga(x) (because a−y = 1/ay)

6. logb(x) = loga(x)/ loga(b)

24

Examples:

• log2(1/4) = − log2(4) = −2.

• log2(−4) undefined

•
log2(2

1035)
= log2(2

10) + log2(3
5)

= 10 log2(2) + 5 log2(3)
= 10 + 5 log2(3)

25

Limit Properties of the Log Function

lim
x→∞ log(x) =∞

lim
x→∞

log(x)

x
= 0

As x gets large log(x) grows without bound.

But x grows MUCH faster than log(x).

In fact, limx→∞(log(x)m)/x = 0

26

Polynomials

f(x) = a0 + a1x + a2x
2 + · · · + akx

k is a polynomial

function.

• a0, . . . , ak are the coefficients

You need to know how to multiply polynomials:

(2x3 + 3x)(x2 + 3x + 1)
= 2x3(x2 + 3x + 1) + 3x(x2 + 3x + 1)
= 2x5 + 6x4 + 2x3 + 3x3 + 9x2 + 3x
= 2x5 + 6x4 + 5x3 + 9x2 + 3x

Exponentials grow MUCH faster than polynomials:

lim
x→∞

a0 + · · · + akx
k

bx
= 0 if b > 1

27

Why Rates of Growth Matter

Suppose you want to design an algorithm to do sorting.

• The naive algorithm takes time n2/4 on average to
sort n items

• A more sophisticated algorithm times time 2n log(n)

Which is better?

lim
n→∞(2n log(n)/(n2/4)) = lim

n→∞(8 log(n)/n) = 0

For example,

• if n = 1, 000, 000, 2n log(n) = 40, 000, 000 — this is
doable
n2/4 = 250, 000, 000, 000 — this is not doable

Algorithms that take exponential time are hopeless on
large datasets.

28

Sum and Product Notation

k
∑

i=0
aix

i = a0 + a1x + a2x
2 + · · · + akx

k

5
∑

i=2
i2 = 22 + 32 + 42 + 52 = 54

Can limit the set of values taken on by the index i:

∑

{i:2≤i≤8|i even}
ai = a2 + a4 + a6 + a8

Can have double sums:

∑2
i=1

∑3
j=0 aij

= ∑2
i=1(

∑3
j=0 aij)

= ∑3
j=0 a1j + ∑3

j=0 a2j

= a10 + a11 + a12 + a13 + a20 + a21 + a22 + a23

Product notation similar:
k
∏

i=0
ai = a0a1 · · · ak

29

Changing the Limits of Summation

This is like changing the limits of integration.

• ∑n+1
i=1 ai = ∑n

i=0 ai+1 = a1 + · · · + an+1

Steps:

• Start with ∑n+1
i=1 ai.

• Let j = i− 1. Thus, i = j + 1.

• Rewrite limits in terms of j: i = 1 → j = 0; i =
n + 1→ j = n

• Rewrite body in terms of ai → aj+1

• Get ∑n
j=0 aj+1

• Now replace j by i (j is a dummy variable). Get
n
∑

i=0
ai+1

30

Matrix Algebra

An m×n matrix is a two-dimensional array of numbers,
with m rows and n columns:

a11 a12 · · · a1n

a21 a22 · · · a2n
...

am1 am2 · · · amn

• A 1× n matrix [a1 . . . an] is a row vector.

• An m× 1 matrix is a column vector.

We can add two m× n matrices:

• If A = [aij] and B = [bij] then A + B = [aij + bij].

2 3
5 7

+

3 7
4 2

=

5 10
9 9

Another important operation: transposition.

• If we transpose an m × n matrix, we get an n ×m
matrix by switching the rows and columns.

2 3 9
5 7 12

T

=

2 5
3 7
9 12

31

Matrix Multiplication

Given two vectors ~a = [a1, . . . , ak] and ~b = [b1, . . . , bk],
their inner product (or dot product) is

~a ·~b =
k
∑

i=1
aibi

• [1, 2, 3] · [−2, 4, 6] = (1×−2)+(2×4)+(3×6) = 24.

We can multiply an n×m matrix A = [aij] by an m× k
matrix B = [bij], to get an n× k matrix C = [cij]:

• cij = ∑m
r=1 airbrj

• this is the inner product of the ith row of A with the
jth column of B

32

•

2 3 1
5 7 4

×

3 7
4 2
−1 −2

=

17 18
39 41

17 = (2× 3) + (3× 4) + (1×−1)
= (2, 3, 1) · (3, 4,−1)

18 = (2× 7) + (3× 2) + (1×−2)
= (2, 3, 1) · (7, 2,−2)

39 = (5× 3) + (7× 4) + (4×−1)
= (5, 7, 4) · (3, 4,−1)

41 = (5× 7) + (7× 2) + (4×−2)
= (5, 7, 4) · (7, 2,−2)

33

Why is multiplication defined in this strange way?

• Because it’s useful!

Suppose

z1 = 2y1 + 3y2 + y3 y1 = 3x1 + 7x2

z2 = 5y1 + 7y2 + 4y3 y2 = 4x1 + 2x2

y3 = −x1 − 2x2

Thus,

z1

z2

=

2 3 1
5 7 4

·

y1

y2

y3

and

y1

y2

y3

=

3 7
4 2
−1 −2

·

x1

x2

.

Suppose we want to express the z’s in terms of the x’s:

z1 = 2y1 + 3y2 + y3

= 2(3x1 + 7x2) + 3(4x1 + 2x2) + (−x1 − 2x2)
= (2× 3 + 3× 4 + (−1))x1 + (2× 7 + 3× 2 + (−2))x2

= 17x1 + 18x2

Similarly, z2 = 39x1 + 41x2.

z1

z2

=

2 3 1
5 7 4

·

3 7
4 2
−1 −2

·

x1

x2

. Iteration 1: num =

84, denom = 33, q = 2, rem = 18
Iteration 2: num = 33, denom = 18, q = 1, rem = 15
Iteration 3: num = 18, denom = 15, q = 1, rem = 3
Iteration 4: num = 15, denom = 3, q = 5, rem = 0
Iteration 5: num = 3, denom = 0 ⇒ gcd(84, 33) = 3

34

Procedure Calls

It is useful to extend our algorithmic language to have
procedures that we can call repeatedly. For example, we
may want to have a procedure for computing gcd or fac-
torial, that we can call with different arguments. Here’s
the notation used in the book:

procedure Name(variable list)
procedure body (includes a return statement)

endpro

• The return statement returns control to the portion
of the algorithm from where the procedure was called

Example:

procedure Factorial(n)
fact← 1
m← n
repeat until m = 1

fact← fact×m
m← m− 1

endrepeat
return fact

endpro

35

Recursion

Recursion occurs when a procedure calls itself.

Classic example: Towers of Hanoi

Problem: Move all the rings from pole 1 and pole 2,
moving one ring at a time, and never having a larger ring
on top of a smaller one.

How do we solve this?

• Think recursively!

• Suppose you could solve it for n−1 rings? How could
you do it for n?

36

Solution

• Move top n − 1 rings from pole 1 to pole 3 (we can
do this by assumption)

◦ Pretend largest ring isn’t there at all

• Move largest ring from pole 1 to pole 2

• Move top n − 1 rings from pole 3 to pole 2 (we can
do this by assumption)

◦ Again, pretend largest ring isn’t there

This solution translates to a recursive algorithm:

• Suppose robot(r → s) is a command to a robot to
move the top ring on pole r to pole s

• Note that if r, s ∈ {1, 2, 3}, then 6−r−s is the other
number in the set

procedure H(n, r, s) [Move n disks from r to s]
if n = 1 then robot(r → s)

else H(n− 1, r, 6− r − s)
robot(r → s)
H(n− 1, 6− r − s, s)

endif
return

endpro

37

Tree of Calls

Suppose there are initially three rings on pole 1, which
we want to move to pole 2:

38

Analysis of Algorithms

For a particular algorithm, we want to know:

• How much time it takes

• How much space it takes

What does that mean?

• In general, the time/space will depend on the input
size

◦ The more items you have to sort, the longer it will
take

• Therefore want the answer as a function of the input
size

◦What is the best/worst/average case as a function
of the input size.

Given an algorithm to solve a problem, may want to know
if you can do better.

•What is the intrinsic complexity of a problem?

This is what computational complexity is about.

39

Towers of Hanoi: Analysis

procedure H(n, r, s) [Move n disks from r to s]
if n = 1 then robot(r → s)

else H(n− 1, r, 6− r − s)
robot(r → s)
H(n− 1, 6− r − s, s)

endif
return

endpro

Let hn = # moves to move n rings from pole r to pole s.

• Clearly h1 = 1

• Algorithm shows that hn = 2hn−1 + 1

◦ h2 = 3; h3 = 7; h4 = 15; . . .

◦ hn = 2n − 1

We’ll prove this formally later, when we also show that
this is optimal.

40

