What’s It All About?

e Continuous mathematics—calculus—considers objects
that vary continuously

o distance from the wall

e Discrete mathematics considers discrete objects, that
come in discrete bundles

o number of babies: can’t have 1.2

The mathematical techniques for discrete mathematics
differ from those for continuous mathematics:

e counting/combinatorics
e number theory

e probability

e logic

We'll be studying these techniques in this course.

This Course

We will be focusing on:
e Tools for discrete mathematics:

o computational number theory (handouts)
* the mathematics behind the RSA cryptosystems
o counting/combinatorics (Chapter 4)
o probability (Chapter 6)
* randomized algorithms for primality testing, rout-
ing
o logic (Chapter 7)
* how do you prove a program is correct
e Tools for proving things:
o induction (Chapter 2)

o (to a lesser extent) recursion

First, some background you’ll need but may not have . ..

Why is it computer science?

This is basically a mathematics course:
® 110 programming
e lots of theorems to prove
So why is it computer science?
Discrete mathematics is the mathematics underlying al-
most all of computer science:
e Designing high-speed networks
e Finding good algorithms for sorting
e Doing good web searches
e Analysis of algorithms

e Proving algorithms correct

Sets

You need to be comfortable with set notation:

S ={m|2 <m <100, m is an integer}
S'is
the set of
all m
such that
m is between 2 and 100
and
m 1s an integer.

Important Sets

(More notation you need to know and love ...)

e N (occasionally IN): the nonnegative integers {0, 1,2, 3, ...}

e N the positive integers {1,2,3,...}

e Z: all integers {...,—3,—2,—1,0,1,2,3,...}
e (: the rational numbers {a/b: a,b € Z,b# 0}
e R: the real numbers

e QT R*: the positive rationals/reals

Set Operations

e Union: SUT is the set of all elements in S or T’
oSUT ={zlxeSorzeT}
o {1,2,3} U{3,4,5} ={1,2,3,4,5}
e Intersection: SNT is the set of all elements in both
Sand T
oSNT ={zlz € S,z €T}
0 {1,2,3} n{3,4,5} = {3}
e Set Difference: S — T is the set of all elements in
S notin T
oS—T={zlxeSz¢T}
o {3,4,5} — {1,2,3} = {4,5}
e Complementation: S is the set of elements not in
S
o What is {1,2,3}?
o Complementation doesn’t make sense unless there

is a undverse, the set of elements we want to con-
sider.

o If U is the universe, S = {z|z € U,z ¢ S}
oS=U-85.

Set Notation

e |S| = cardinality of (number of elements in) S
o [{a,b,c}[=3
e Subset: A C B if every element of A is an element
of B

o Note: Lots of people (including me, but not the
authors of the text) usually write A C B only if
Ais a strict or proper subset of B (i.e., A # B).
[write A C B if A= B is possible.

e Power set: P(S) is the set of all subsets of S (some-
times denoted 2°).

oBE.g, P({1,2,3}) =
{0, {13, {2}, {3} {1, 2}, {1,3},{2,3},{1,2,3}}

o [P(5)] = 2%

Venn Diagrams

Sometimes a picture is worth a thousand words (at least
if we don’t have too many sets involved).

A Connection

Lemma: For all sets .S and T, we have
S=lSNT)U(S-1)

Proof: We'll show (1) S C (SNT)U (S —T) and (2)

(SNTyu(S-T)cCS.

For (1), suppose = € S. Either
(a)zeTor(b)z¢T.

If (a) holds, then x € SNT.

If (b) holds, then z € S —T.

In either case, v € (SNT)U (S —1T).

Since this is true for all z € S, we have (1).

For (2), suppose z € (SNT)U (S —T). Thus, either (a)
ze(SNT)orxe (S—T). Either way, z € S.

Since this is true for all z € (SNT) U (S —T'), we have
(2).

Relations

e Cartesian product:
SXxT={(s,t):s€8,teT}

0{1,2,3} x {3,4} =
{(1,3):(2,3),(3,3), (1,4),(2,4), (3,4)}
o|SxT|=|S|x|T].

e A relation on S and T (or, on S x T) is a subset of
SxT

o A relation on S is a subset of S x S

o Taller than is a relation on people: (Joe,Sam) is
in the Taller than relation if Joe is Taller than Sam

o Larger than is a relation on R:
L=A{(z,y)|z,y € R,z >y}
o Diwisibility is a relation on N:

D ={(z,y)|z,y € N,z|y}

11

Two Important Morals

1. One way to show S = T'istoshow S C T'and T C S.

2. One way to show S C T is to show that for every
z e S xisalsoinT.

Reflexivity, Symmetry, Transitivity

o A relation R on S is reflexive if (z,z) € R for all
z€eS.

o < is reflexive; < is not

e A relation R on S is symmetric if (x,y) € R implies

(y.x) € R.
o “sibling-of” is symmetric (what about “sister of”)
o < is not symmetric

o A relation R on S is transitive if (x,y) € R and
(y,z) € R implies (x,2) € R.
o <, <, >, > are all transitive;

o “parent-of” is not transitive; “ancestor-of” is

Pictorially, we have:

12

Transitive Closure

[[NOT DISCUSSED ENOUGH IN THE TEXT]]

The transitive closure of a relation R is the least relation
R* such that

LRECR
2. R* is transitive (so that if (u,v), (v,w) € R*, then so
is (u, w)).
Example: Suppose R = {(1,2),(2,3),(1,4)}.
o B = {(1,2),(1,3),(2,3), (1,4)}
e we need to add (1, 3), because (1,2),(2,3) € R
Note that we don’t need to add (2,4).
o If (2,1), (1,4) were in R, then we'd need (2,4)

e (1,2), (1,4) doesn’t force us to add anything (it doesn’t
fit the “pattern” of transitivity.

Note that if R is already transitive, then R* = R.

Functions

We think of a function f : S — T as providing a mapping
from S to T. But ...

Formally, a function is a relation R on S xT such that for
cach s € S, there is a unique ¢ € T such that (s,t) € R.

If f: S — T, then S is the domain of f, T is the range;
{y : f(z) =y for some z € S} is the image.

15

Equivalence Relations

e A relation R is an equivalence relation if it is reflex-
ive, symmetric, and transitive

o = is an equivalence relation

o Parity is an equivalence relation on N;
(x,y) € Parity if x — y is even

We often think of a function as being characterized by an
algebraic formula

e y = 3z — 2 characterizes f(z) = 3z — 2.
It ain’t necessarily so.
e Some formulas don’t characterize functions:
o 22 +9? = 1 defines a circle; no unique y for each x

e Some functions can’t be characterized by algebraic
formulas

0 if n is even
o f(n)= 1 if n is odd

16

Function Terminology

Suppose f: S —=T

e f is onto (or surjective) if, for each ¢ € T, there is
some s € S such that f(s) =t.

oif f: RY — R*, f(z) = 2% then f is onto
oif f: R — R, f(z) = 22, then f is not onto

e [is one-to-one (1-1, injective) if it is not the case

that s # ¢ and f(s) = f(5').

oif f: R" — R*, f(z) = 2% then fis 1-1
oif f: R — R, f(z) =2, then f is not 1-1.

17

Inverse Functions

If f: S — T, then f~! maps an element in the range of
f to all the elements that are mapped to it by f.

F7HE) = {slf(s) =t}

o if f(2) =3, then 2 € f71(3).
f~1is not a function from range(f) to S.

It is a function if f is one-to-one.

e In this case, f~1(f(z)) = z.

19

e a function is bijective if it is 1-1 and onto.

oif f: R* — R*, f(x) = 22, then f is bijective
oif f: R— R, f(z) = 2% then f is not bijective.
If f:S — T is bijective, then |S| = |T|.

Functions You Should Know
(and Love)

o Absolute value: Domain = R; Range = {0} U Rt

| = T ?f x>0
—x ifx <0
o3| =]-3=3
e Floor function: Domain = R; Range = Z
|x| = largest integer not greater than z
o|3.2] =3; V3] =1;|-25]=-3
e Ceiling function: Domain = R; Range = Z
[2] = smallest integer not less than
0[3.2] =4; [V3] =2 [-25] = -2
e Fuctorial function: Domain = Range = N
nl=nn-—1)(n—-2).3x2x1

ohl=5x4x3x2x1=120
o By convention, 0! = 1

20

Exponents

Ezponential with base a: Domain = R, Range=R™
flx) =a”
e Note: a, the base, is fixed; x varies
e You probably know: a” =a X --- X a (n times)
How do we define f(xz) if 2 is not a positive integer?
e Want: (1) a”" = a%a’; (2) a' = a

This means
2 1+1 1,1

ear=at=aal =axa
ed’=a"'=cdka'=axaxa
°o...

ea"=aXx...xa (ntimes)

We get more:

0

ea=a'=a""=qaxd

o Therefore a = 1

b+(—b) b b

el=a"=¢ =a’xa”

o Therefore a= = 1/a"

21

Computing a"* quickly

What’s the best way to compute @007
One way: multiply a x a X a X a ...
e This requires 999 multiplications.

Can we do better?
How many multiplications are needed to compute:

Write 1000 in binary: 1111101000

e How many multiplications are needed to calculate a

23

1,1 1 1 1
a0 =aqa :a?*?:aixa?:(ai)

1 2

1
o Therefore a2 = \/a

o Similar arguments show that at = Va

e a" =qa" X+ X a®(m times) = (a")

m

o Thus, a = (a%)"" = (Ya)™.

This determines a® for all x rational. The rest follows by
continuity.

22

Logarithms

Logarithm base a: Domain = R*; Range = R

y=log,(z) & a =z

e 10g,(8) = 3; logy(16) = 4; 3 < log,y(15) < 4

The key properties of the log function follow from those
for the exponential:

1.
2.
3.

t

log,(1) = 0 (because a” = 1)

1:a)

log,(a) =1 (because a
log,(zy) = log,(x) + log,(y)

Proof: Suppose log,(x) = 2z and log,(y) = 2.
Then a** = x and a™ = y.

Therefore zy = a*! X a® = a*'72.

Thus log,(zy) = 21 + 2 = log,(x) + log,(y).

. log,(z") = rlog,(z)
og,(1/x) = —log,(z) (because a™¥ = 1/a¥)
logy(x) = log,(x)/ log,(b)

24

Examples:

o logy(1/4) = —logy(4) = —2.
o logy(—4) undefined
o -
log,(2'93%)
= logy(2'7) +logy(3°)
101og,(2) + 51ogy(3)
= 10+ 5logy(3)

25

Polynomials

f(x) = ag + a1z + agx® + -+ + a2 is a polynomial
function.

® ay,...,a; are the coefficients
You need to know how to multiply polynomials:
(22° + 3x) (2% + 3z + 1)
= 20%(2® + 3z + 1) + 3x(2® + 3z + 1)

22° + 6zt + 22 + 32% + 922 + 3z
= 22% + 62' + 52® + 922 + 3z

Exponentials grow MUCH faster than polynomials:

ap+ -+ apa®

b =0ifb>1

lim
Tr—00

27

Limit Properties of the Log Function

Jim log(x) = oo

lim log()

T—00 €T

=0
As x gets large log(z) grows without bound.

But 2 grows MUCH faster than log(z).

In fact, lim,_,(log(z)™)/z =0

26

Why Rates of Growth Matter

Suppose you want to design an algorithm to do sorting.

e The naive algorithm takes time n?/4 on average to
sort n items

e A more sophisticated algorithm times time 2n log(n)

Which is better?

limy (2nlog(n)/(n?/4)) = Jim (8log(n)/n) = 0
For example,
e if n = 1,000,000, 2nlog(n) = 40,000,000 — this is
doable
n2/4 = 250, 000, 000, 000 — this is not doable

Algorithms that take exponential time are hopeless on
large datasets.

28

Sum and Product Notation

k . y
> ar’ = ag+ ajx +agrt -+ apz”

=0

=224 P 42452 =54

[\\\')Mo—v

K3

Can limit the set of values taken on by the index i:

> a; = az + ag+ ag + as
{i:2<i<8|i even}

Can have double sums:
2 3
Zézl ZJ;O ;j
= 271:1(23':0 aij)
_ 3 _ 3 .
= Eij 37, + Ej:o Q2
= ayp + an + az + a3 + agy + agy + as + ass

Product notation similar:
k

a; = apaq * - - ag
=0

29

Matrix Algebra

An m X n matrizis a two-dimensional array of numbers,
with m rows and n columns:

aipr aiz - Qip
QA1 Q2 -+ Q2p
Qm1 Gm2 - Amn

e A 1 X n matrix [a; ... ay] is a row vector.
e An m X 1 matrix is a column vector.
We can add two m x n matrices:
o If A =a;] and B = [b;] then A+ B = [a;; + bj].

23 37 5 10
57 42 99

Jr

Another important operation: transposition.
e If we transpose an m X n matrix, we get an n. X m

matrix by switching the rows and columns.

239
5712

T 25
=137
9 12

31

Changing the Limits of Summation

This is like changing the limits of integration.
o tla, =5 jai=a;+ -+ ap
Steps:
o Start with >l a;.

elet j=¢—1 Thus,i=75+1

e Rewrite limits in terms of j: i =1 — 7 = 0; i =
n+l—7=n

o Rewrite body in terms of a; — a4
n
o Get Ti_0 @jy1

e Now replace j by ¢ (j is a dummy variable). Get
n

@11
i=0

7=

30

Matrix Multiplication

Given two vectors @ = [ay, ..., ax] and b= [b1, ..., bkl
their inner product (or dot product) is

- k
a-b= ‘;aibi
o [1,2,3]:[—2,4,6] = (1x —=2)+ (2x4)+ (3 x 6) = 24.

We can multiply an n x m matrix A = [a;;] by an m x k
matrix B = [b;], to get an n x k matrix C' = [¢;]:
ocij =3 a;b;

e this is the inner product of the ith row of A with the
jth column of B

32

531 3 7 17 18 Why is multiplicati(?n defined in this strange way?
*lg7glX 4 2= 39 41 e Because it’s useful!
-1 =2
Suppose
17 =(2x3)+@Bx4)+(1x-1) 21=20+3+ys y1=3T+ T2
= <27371) : (374771> 2o = by + Tyo + 4y3 yo = 4x1 + 229
18 =02x7)+(3x2)+ (1 x-2) ys = —a1 — 279
=(2,3,1)-(7,2,-2)
= 21 231 T
=(5,7,4)-(3,4,-1) Thus, =157 4l|® and |y | =] 4 2 .
41 =(5xT7)+ (Tx2)+ (4 x =2) & N s s _1 _of| LTz
=(6,7.4)(7,2,-2) Suppose we want to express the 2’s in terms of the x’s:
21 =2y1+ 3y + 3
= 2(3xy + Txo) + 3(4x1 + 229) + (—1 — 229)
=(2X34+3x4+(-1))r1+(2XxT4+3 X2+ (=2))z9
= 17z1 + 1829
Similarly, 2o = 391 + 41xs.
3 7
- 231 4 2 || " Tteration 1: num =
Z9 574 1 9 X9
84, denom = 33, ¢ =2, rem = 18
Iteration 2: num = 33, denom =18, ¢=1, rem =15
Iteration 3: num = 18, denom =15, ¢=1, rem =3
[teration 4: num = 15, denom =3, ¢=5, rem =0
Iteration 5: num = 3, denom = 0 = ged(84,33) = 3
33 34
Procedure Calls Recursion
It is useful to extend our algorithmic language to have Recursion occurs when a procedure calls itself.

procedures that we can call repeatedly. For example, we
may want to have a procedure for computing ged or fac-
torial, that we can call with different arguments. Here’s
the notation used in the book:

Classic example: Towers of Hanoi

procedure Name(variable list)
procedure body (includes a return statement)
endpro

e The return statement returns control to the portion
of the algorithm from where the procedure was called

Example:
procedure Factorial(n) Problem: Move all the rings from pole 1 and pole 2,
fact — 1 moving one ring at a time, and never having a larger ring

men on top of a smaller one.

repeat until m =1 How do we solve this?
fact — fact x m

e Think recursively!
m«—m—1 ’

endrepeat e Suppose you could solve it for n — 1 rings? How could
return fact you do it for n?
endpro

Solution

e Move top n — 1 rings from pole 1 to pole 3 (we can
do this by assumption)

o Pretend largest ring isn’t there at all
e Move largest ring from pole 1 to pole 2

e Move top n — 1 rings from pole 3 to pole 2 (we can
do this by assumption)

o Again, pretend largest ring isn’t there
This solution translates to a recursive algorithm:

e Suppose robot(r — s) is a command to a robot to
move the top ring on pole 7 to pole s

e Note that if 7, s € {1,2,3}, then 6 —r — s is the other

number in the set

procedure H(n,r, s) [Move n disks from r to s
if n = 1 then robot(r — s)
else Hn—1,r,6 —r—s)
robot(r — s)
Hn—1,6—r—s,s)
endif
return
endpro

37

Analysis of Algorithms

For a particular algorithm, we want to know:
e How much time it takes

e How much space it takes

What does that mean?

e In general, the time/space will depend on the input
size

o The more items you have to sort, the longer it will
take

e Therefore want the answer as a function of the input
size

o What is the best/worst/average case as a function
of the input size.
Given an algorithm to solve a problem, may want to know
if you can do better.
e What is the intrinsic complezity of a problem?

This is what computational complezity is about.

39

Tree of Calls

Suppose there are initially three rings on pole 1, which
we want to move to pole 2:

38

Towers of Hanoi: Analysis

procedure H(n,r,s) [Move n disks from r to s
if n = 1 then robot(r — s)
else Hn—1,r,6—r—s)
robot(r — s)
Hn—-1,6—r—s,s)
endif
return
endpro

Let h, = # moves to move n rings from pole 7 to pole s.
o Clearly h; =1
e Algorithm shows that h,, = 2h, ;1 + 1
ohy=3,h3="7, hy=15; ...
oh,=2"—1

We'll prove this formally later, when we also show that
this is optimal.

40

