Ten Powerful Ideas

- **Counting**: Count without counting (*combinatorics*)
- Induction: Recognize it in all its guises.
- **Exemplification**: Find a sense in which you can try out a problem or solution on small examples.
- Abstraction: Abstract away the inessential features of a problem.
 - One possible way: represent it as a graph
- **Modularity**: Decompose a complex problem into simpler subproblems.
- **Representation**: Understand the relationships between different possible representations of the same information or idea.
 - Graphs vs. matrices vs. relations
- **Refinement**: The best solutions come from a process of repeatedly refining and inventing alternative solutions.
- **Toolbox**: Build up your vocabulary of abstract structures.

1

- **Optimization**: Understand which improvements are worth it.
- **Probabilistic methods**: Flipping a coin can be surprisingly helpful!

Connections: Random Graphs

Suppose we have a random graph with n vertices. How likely is it to be connected?

- What is a *random* graph?
 - \circ If it has n vertices, there are C(n,2) possible edges, and $2^{C(n,2)}$ possible graphs. What fraction of them is connected?
 - One way of thinking about this. Build a graph using a random process, that puts each edge in with probability 1/2.
- Given three vertices a, b, and c, what's the probability that there is an edge between a and b and between band c? 1/4
- What is the probability that there is no path of length 2 between a and c? $(3/4)^{n-2}$
- What is the probability that there is a path of length 2 between a and c? $1 (3/4)^{n-2}$
- What is the probability that there is a path of length 2 between a and every other vertex? > $(1-(3/4)^{n-2})^{n-1}$

Now use the binomial theorem to compute $(1-(3/4)^{n-2})^{n-1}$

2

$$(1 - (3/4)^{n-2})^{n-1}$$

= 1 - (n - 1)(3/4)^{n-2} + C(n - 1, 2)(3/4)^{2(n-2)} + \cdots

For sufficiently large n, this will be (just about) 1.

Bottom line: If n is large, then it is almost certain that a random graph will be connected.

Theorem: [Fagin, 1976] If P is *any* property expressible in first-order logic, it is either true in almost all graphs, or false in almost all graphs.

This is called a $0\mathchar`-1$ law.

Connection: First-order Logic

Suppose you wanted to query a database. How do you do it?

Modern database query language date back to SQL (structured query language), and are all based on first-order logic.

• The idea goes back to Ted Codd, who invented the notion of relational databases.

Suppose you're a travel agent and want to query the airline database about whether there are flights from Ithaca to Santa Fe.

- How are cities and flights between them represented?
- How do we form this query?

You're actually asking whether there is a path from Ithaca to Santa Fe in the graph.

• This fact cannot be expressed in first-order logic!

Some Bureuacracy

- The final is on Thursday, Dec. 16, 12-2:30 PM, in Olin 255
- If you have conflicts (more than two exams in a 24-hour time period) let me know as soon as possible.
 - Also tell me the courses and professors involved (with emails)
 - \circ Also tell the other professors
 - There will probably be a makeup on Dec. 16.
- Office hours go on as usual during study week, but check the course web site soon.
 - \circ I'll be out of town Dec. 6
 - \circ There may be small changes to accommodate the TAs exams
- There will be two review sessions,
 - Tuesday, Dec. 14, 7-8:30, Upson 205
 - Wednesday, Dec. 15, 7-8:30, Upson 205

Coverage of Final

5

- everything covered by the first prelim
 - \circ emphasis on more recent material
- Chapter 4: Fundamental Counting Methods
 - Basic methods: sum rule, product rule, division rule
 - \circ Permutations and combinations
 - \circ Combinatorial identities (know basic theorems covered in notes)
 - Pascal's triangle
 - Binomial Theorem (but not multinomial theorem)
 - Balls and urns
 - \circ Inclusion-exclusion
 - \circ Pigeonhole principle
- Chapter 6: Probability:
 - 6.1−6.7
 - o basic definitions: probability space, events
 - o conditional probability, independence, Bayes Thm.
 - random variables

o uniform, binomial, and Poisson distributions

6

- expected value and variance
- Markov + Chebyshev inequalities
- understanding Law of Large Numbers, Central Limit Theorem
- Chapter 7: Logic:
 - 7.1−7.4, 7.6-7.8; *not* 7.5
 - translating from English to propositional (or firstorder) logic

8

- \circ truth tables
- \circ algorithm verification
- o first-order logic