## Ten Powerful Ideas

- Counting: Count without counting (combinatorics)
- Induction: Recognize it in all its guises.
- Exemplification: Find a sense in which you can try out a problem or solution on small examples.
- Abstraction: Abstract away the inessential features of a problem.
- One possible way: represent it as a graph
- Modularity: Decompose a complex problem into simpler subproblems.
- Representation: Understand the relationships between different possible representations of the same information or idea.
- Graphs vs. matrices vs. relations
- Refinement: The best solutions come from a process of repeatedly refining and inventing alternative solutions.
- Toolbox: Build up your vocabulary of abstract structures.

1

## Connections: Random Graphs

Suppose we have a random graph with $n$ vertices. How likely is it to be connected?

- What is a random graph?
- If it has $n$ vertices, there are $C(n, 2)$ possible edges, and $2^{C(n, 2)}$ possible graphs. What fraction of them is connected?
- One way of thinking about this. Build a graph using a random process, that puts each edge in with probability $1 / 2$.
- Given three vertices $a, b$, and $c$, what's the probability that there is an edge between $a$ and $b$ and between $b$ and $c ? 1 / 4$
- What is the probability that there is no path of length 2 between $a$ and $c$ ? $(3 / 4)^{n-2}$
- What is the probability that there is a path of length 2 between $a$ and $c ? 1-(3 / 4)^{n-2}$
- What is the probability that there is a path of length 2 between $a$ and every other vertex? $>\left(1-(3 / 4)^{n-2}\right)^{n-1}$
- Optimization: Understand which improvements are worth it.
- Probabilistic methods: Flipping a coin can be surprisingly helpful!

Now use the binomial theorem to compute $\left(1-(3 / 4)^{n-2}\right)^{n-1}$

$$
\begin{aligned}
& \left(1-(3 / 4)^{n-2}\right)^{n-1} \\
= & 1-(n-1)(3 / 4)^{n-2}+C(n-1,2)(3 / 4)^{2(n-2)}+\cdots
\end{aligned}
$$

For sufficiently large $n$, this will be (just about) 1 .
Bottom line: If $n$ is large, then it is almost certain that a random graph will be connected.

Theorem: [Fagin, 1976] If $P$ is any property expressible in first-order logic, it is either true in almost all graphs, or false in almost all graphs.
This is called a 0-1 law.

## Connection: First-order Logic

Suppose you wanted to query a database. How do you do it?

Modern database query language date back to SQL (structured query language), and are all based on first-order logic.

- The idea goes back to Ted Codd, who invented the notion of relational databases.

Suppose you're a travel agent and want to query the airline database about whether there are flights from Ithaca to Santa Fe.

- How are cities and flights between them represented?
- How do we form this query?

You're actually asking whether there is a path from Ithaca to Santa Fe in the graph.

- This fact cannot be expressed in first-order logic!


## Coverage of Final

- everything covered by the first prelim
- emphasis on more recent material
- Chapter 4: Fundamental Counting Methods
- Basic methods: sum rule, product rule, division rule
- Permutations and combinations
- Combinatorial identities (know basic theorems covered in notes)
- Pascal's triangle
- Binomial Theorem (but not multinomial theorem)
- Balls and urns
- Inclusion-exclusion
- Pigeonhole principle
- Chapter 6: Probability:
- 6.1-6.7
- basic definitions: probability space, events
- conditional probability, independence, Bayes Thm. - random variables
- The final is on Thursday, Dec. 16, 12-2:30 PM, in Olin 255
- If you have conflicts (more than two exams in a 24 hour time period) let me know as soon as possible.
- Also tell me the courses and professors involved (with emails)
- Also tell the other professors
- There will probably be a makeup on Dec. 16.
- Office hours go on as usual during study week, but check the course web site soon.
- I'll be out of town Dec. 6
- There may be small changes to accommodate the TAs exams
- There will be two review sessions,
- Tuesday, Dec. 14, 7-8:30, Upson 205
- Wednesday, Dec. 15, 7-8:30, Upson 205
- uniform, binomial, and Poisson distributions
- expected value and variance
- Markov + Chebyshev inequalities
- understanding Law of Large Numbers, Central Limit

Theorem

- Chapter 7: Logic:
- 7.1-7.4, 7.6-7.8; * not $^{*} 7.5$
- translating from English to propositional (or firstorder) logic
- truth tables
- algorithm verification
- first-order logic

