
Logic

Logic is a tool for formalizing reasoning. There are lots
of different logics:

• probabilistic logic: for reasoning about probability

• temporal logic: for reasoning about time (and pro-
grams)

• epistemic logic: for reasoning about knowledge

The simplest logic (on which all the rest are based) is
propositional logic. It is intended to capture features of
arguments such as the following:

Borogroves are mimsy whenever it is brillig. It is
now brillig and this thing is a borogrove. Hence
this thing is mimsy.

Propositional logic is good for reasoning about

• conjunction, negation, implication (“if . . . then . . . ”)

Amazingly enough, it is also useful for

• circuit design

• program verification

1

Propositional Logic: Syntax

To formalize the reasoning process, we need to restrict
the kinds of things we can say. Propositional logic is
particularly restrictive.
The syntax of propositional logic tells us what are legit-
imate formulas.

We start with primitive propositions. Think of these as
statements like

• It is now brilling

• This thing is mimsy

• It’s raining in San Francisco

• n is even

We can then form more complicated compound proposi-
tions using connectives like:

• ¬: not

• ∧: and

• ∨: or

• ⇒: implies

• ⇔: equivalent (if and only if)

2

Examples:

• ¬P : it is not the case that P

• P ∧Q: P and Q

• P ∨Q: P or Q

• P ⇒ Q: P implies Q (if P then Q)

Typical formula:

P ∧ (¬P ⇒ (Q⇒ (R ∨ P )))

3

Wffs

Formally, we define well-formed formulas (wffs or just
formulas) inductively (remember Chapter 2!):
The wffs consist of the least set of strings such that:

1. Every primitive proposition P,Q,R, . . . is a wff

2. If A is a wff, so is ¬A

3. If A and B are wffs, so are A ∧ B, A ∨ B, A ⇒ B,
and A⇔ B

4



Disambiguating Wffs

We use parentheses to disambiguate wffs:

• P ∨Q∧R can be either (P ∨Q)∧R or P ∨ (Q∧R)

Mathematicians are lazy, so there are standard rules to
avoid putting in parentheses.

• In arithmetic expressions, × binds more tightly than
+, so 3 + 2× 5 means 3 + (2× 5)

• In wffs, here is the precedence order:

◦ ¬

◦ ∧

◦ ∨

◦ ⇒

◦ ⇔

Thus, P ∨Q ∧R is P ∨ (Q ∧R);
P ∨ ¬Q ∧R is P ∨ ((¬Q) ∧R)
P ∨ ¬Q⇒ R is (P ∨ (¬Q))⇒ R

•With two or more instances of the same binary con-
nective, evaluate left to right:

P ⇒ Q⇒ R is (P ⇒ Q)⇒ R

5

Translating English to Wffs

To analyze reasoning, we have to be able to translate
English to wffs.
Consider the following sentences:

1. Bob doesn’t love Alice

2. Bob loves Alice and loves Ann

3. Bob loves Alice or Ann

4. Bob loves Alice but doesn’t love Ann

5. If Bob loves Alice then he doesn’t love Ann

First find appropriate primitive propositions:

• P : Bob loves Alice

• Q: Bob loves Ann

Then translate:

1. ¬P

2. P ∧Q

3. P ∨Q

4. P ∧ ¬Q (note: “but” becomes “and”)

5. P ⇒ ¬Q

6

Evaluating Formulas

Given a formula, we want to decide if it is true or false.

How do we deal with a complicated formula like:

P ∧ (¬P ⇒ (Q⇒ (R ∨ P )))

The truth or falsity of such a formula depends on the truth
or falsity of the primitive propositions that appear in it.
We use truth tables to describe how the basic connectives
(¬, ∧, ∨, ⇒, ⇔) work.

7

Truth Tables

For ¬:

P ¬P

T F
F T

For ∧:

P Q P ∧Q

T T
T F
F T
F F

For ∨:

P Q P ∨Q

T T
T F
F T
F F

This means ∨ is inclusive or, not exclusive or.

8



Exclusive Or

What’s the truth table for “exclusive or”?

P Q P ⊕Q

T T F
T F T
F T T
F F F

P ⊕Q is equivalent to (P ∧ ¬Q) ∨ (¬P ∧Q)

P Q ¬P ¬Q P ∧ ¬Q Q ∧ ¬P (P ∧ ¬Q) ∨ (¬P ∧Q)
T T F F F F F
T F F T T F T
F T T F F T T
F F T T F F F

9

Truth Table for Implication

For⇒:

P Q P ⇒ Q

T T
T F
F T
F F

Why is this right? What should the truth value of P ⇒ Q

be when P is false?

• This choice is mathematically convenient

• As long as Q is true when P is true, then P ⇒ Q will
be true no matter what.

For⇔:

P Q P ⇔ Q

T T T
T F F
F T F
F F T

10

How many possible truth tables are there with two prim-
itive propositions?

P Q ?
T T
T F
F T
F F

By the product rule, there are 16.

We’ve defined connectives corresponding to 4 of them: ∧,
∨, ⇒, ⇔.

•Why didn’t we bother with the rest?

• They’re definable!

11

Other Equivalences

It’s not hard to see that P ⊕ Q is also equivalent to
¬(P ⇔ Q)

Thus, P ⇔ Q is equivalent to ¬(P ⊕Q), which is equiv-
alent to

¬((P ∧ ¬Q) ∨ (¬P ∧Q))

Thus, we don’t need ⇔ either.

We also don’t need ⇒:

P ⇒ Q is equivalent to ¬P ∨Q

We also don’t need ∨:

P ∨Q is equivalent to ¬(¬P ∧ ¬Q)

Each of the sixteen possible connectives can be expressed
using ¬ and ∧ (or ∨)

12



Tautologies

A truth assignment is an assignment of T or F to every
proposition.

• How hard is it to check if a formula is true under a
given truth assignment?

• Easy: just plug it in and evaluate.

◦ Time linear in the length of the formula

A tautology (or theorem) is a formula that evaluates to
T for every truth assignment.

Examples:

• (P ∨Q)⇔ ¬(¬P ∧ ¬Q)

• P ∨Q ∨ (¬P ∧ ¬Q)

• (P ⇒ Q) ∨ (Q⇒ P )

◦ It’s necessarily true that if elephants are pink then
the moon is made of green cheese or if the moon is
made of green cheese, then elephants are pink.

How hard is it to check if a formula is a tautology?

• How many truth assignments do we have to try?

13

Arguments

Definition: An argument has the form

A1

A2

...
An

——
B

A1, . . . , An are called the premises of the argument; B is
called the conclusion. An argument is valid if, whenever
the premises are true, then the conclusion is true.

14

Logical Implication

A formula A logically implies B if A⇒ B is a tautology.

Theorem: An argument is valid iff the conjunction of
its premises logically implies the conclusion.

Proof: Suppose the argument is valid. We want to show
(A1 ∧ . . . ∧ An)⇒ B is a tautology.

• Do we have to try all 2k truth assignments (where
k = #primitive propositions in A1, . . . , An, B).

It’s not that bad.

• Because of the way we defined⇒, A1∧ . . .∧An ⇒ B

is guaranteed to be true if A1 ∧ . . . ∧ An is false.

• But if A1 ∧ . . . ∧ An is true, B is true, since the
argument is valid.

• Thus, (A1 ∧ . . . ∧ An)⇒ B is a tautology.

For the converse, suppose (A1 ∧ . . . ∧ An) ⇒ B is a
tautology. If A1, . . . , An are true, then B must be true.
Hence the argument is valid.

15

Remember:

Borogroves are mimsy whenever it is brillig.
It is now brillig and this thing is a borogrove.
Hence this thing is mimsy.

Suppose

• P : It is now brilling

• Q: This thing is a borogrove

• R: This thing is mimsy

This becomes:

P ⇒ (Q⇒ R)
P ∧Q

——–
R

This argument is valid if

[(P ⇒ (Q⇒ R)) ∧ (P ∧Q)]⇒ R

is a tautology.

16



Natural Deduction

Are there better ways of telling if a formula is a tautology
than trying all possible truth assignments.

• In the worst case, it appears not.

◦ The problem is co-NP-complete.

◦ The satisfiability problem—deciding if at least one
truth assignment makes the formula true—is NP-
complete.

Nevertheless, it often seems that the reasoning is staight-
forward:
Why is this true:

((P ⇒ Q) ∧ (Q⇒ R))⇒ (P ⇒ R)

We want to show that if P ⇒ Q and Q ⇒ R is true,
then P ⇒ R is true.

So assume that P ⇒ Q and Q ⇒ R are both true. To
show that P ⇒ R, assume that P is true. Since P ⇒ Q

is true, Q must be true. Since Q ⇒ R is true, R must
be true. Hence, P ⇒ R is true.

We want to codify such reasoning.

17

Formal Deductive Systems

A formal deductive system (also known as an axiom
system) consists of

• axioms (special formulas)

• rules of inference: ways of getting new formulas from
other formulas. These have the form

A1

A2

...
An

——
B

Read this as “from A1, . . . , An, infer B.”

◦ Sometimes written “A1, . . . , An ` B”

Think of the axioms as tautologies, while the rules of
inference give you a way to derive new tautologies from
old ones.

18

Derivations

A derivation (or proof ) in an axiom system AX is a
sequence of formulas

C1, . . . , CN ;

each formula Ck is either an axiom in AX or follows from
previous formulas using an inference rule in AX :

• i.e., there is an inference rule A1, . . . , An ` B such
that Ai = Cji for some ji < N and B = CN .

This is said to be a derivation or proof of CN .

A derivation is a syntactic object: it’s just a sequence of
formulas that satisfy certain constraints.

•Whether a formula is derivable depends on the axiom
system

• Different axioms → different formulas derivable

• Derivation has nothing to do with truth!

◦ How can we connect derivability and truth?

19

Typical Axioms

• P ⇒ ¬¬P

• P ⇒ (Q⇒ P )

What makes an axiom “acceptable”?

• it’s a tautology

20



Typical Rules of Inference

Modus Ponens

A⇒ B

A

———
B

Modus Tollens

A⇒ B

¬B

——
¬A

What makes a rule of inference “acceptable”?

• It preserves validity:

◦ if the antecedents are valid, so is the conclusion

• Both modus ponens and modus tollens are acceptable

21

Sound and Complete Axiomatizations

Standard question in logic:

Can we come up with a nice sound and complete
axiomatization: a (small, natural) collection of
axioms and inference rules from which it is possible
to derive all and only the tautologies?

• Soundness says that only tautologies are derivable

• Completeness says you can derive all tautologies

If all the axioms are valid and all rules of inference pre-
serve validity, then all formulas that are derivable must
be valid.

• Proof: by induction on the length of the formula

It’s not so easy to find a complete axiomatization.

22

A Sound and Complete

Axiomatization for Propositional

Logic

Consider the following axiom schemes:

A1. A⇒ (B ⇒ A)

A2. (A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))

A3. ((A⇒ B)⇒ (A⇒ ¬B))⇒ ¬A

These are axioms schemes; each one encodes an infinite
set of axioms:

• P ⇒ (Q ⇒ P ), (P ⇒ R) ⇒ (Q ⇒ (P ⇒ R)) are
instances of A1.

Theorem: A1, A2, A3 + modus ponens give a sound
and complete axiomatization for formulas in propositional
logic involving only⇒ and ¬.

• Recall: can define ∨ and ∧ using ⇒ and ¬

◦ P ∨Q is equivalent to ¬P ⇒ Q

◦ P ∧Q is equivalent to ¬(P ⇒ ¬Q)

23

A Sample Proof

Derivation of P ⇒ P :

1. P ⇒ ((P ⇒ P )⇒ P )
[instance of A1: take A = P , B = P ⇒ P ]

2. (P ⇒ ((P ⇒ P ) ⇒ P )) ⇒ ((P ⇒ (P ⇒ P )) ⇒
(P ⇒ P ))

[instance of A2: take A = C = P , B = P ⇒ P ]

3. (P ⇒ (P ⇒ P ))⇒ (P ⇒ P )
[applying modus ponens to 1, 2]

4. P ⇒ (P ⇒ P ) [instance of A1: take A = B = P ]

5. P ⇒ P [applying modus ponens to 3, 4]

Try deriving P ⇒ ¬¬P from these axioms

• it’s hard!

24



Algorithm Verification

This is (yet another) hot area of computer science.

• How do you prove that your program is correct?

◦ You could test it on a bunch of instances. That
runs the risk of not exercising all the features of
the program.

In general, this is an intractable problem.

• For small program fragments, formal verification us-
ing logic is useful

• It also leads to insights into program design.

25

Consider the following algorithm for multiplication:

Input x [Integer ≥ 0]
y [Integer]

Algorithm Mult

prod← 0
u← 0
repeat u = x

prod← prod + y

u← u + 1
end repeat

How do we prove this is correct?

• Idea (due to Floyd and Hoare): annotate program
with assertions that are true of the line of code imme-
diately following them.

• An assertion just before a loop is true each time the
loop is entered. This is a loop invariant.

• An assertion at the end of a program is true after
running the program.

26

Input x [Integer ≥ 0]
y [Integer]

Algorithm Mult
∏← 0
u← 0
{prod = uy} [Loop invariant]
repeat u = x

prod← prod + y

u← u + 1
end repeat

{prod = uy ∧ u = x}

Thus, we must show prod = uy is true each time we enter
the loop.

• Proof is by induction (big surprise)

It follows that prod = uy ∧ u = x holds after exiting the
program, since we exit after trying the loop (so prod =
uy) and discovering u = x. It follows that prod = xy at
termination.

But how do we know the program terminates?

•We prove (by induction!) that after the kth iteration
of the loop, u = k.

• Since x ≥ 0, eventually u = x, and we terminate the
loop (and program)

27

We won’t be covering Boolean algebra (it’s done in CS
314), although you should read Section 7.5!

28



Predicate Calculus

There are lots of things that can’t be expressed by propo-
sitional formulas. In first-order logic, we can:

• Talk about individuals and the properties they have:

◦ Bob and Alice are both American
American(Bob) ∧ American(Alice)

• Talk about the relations between individuals

◦ Bob loves Alice but Bob doesn’t love Anne
Loves(Bob,Alice) ∧ ¬Loves(Bob,Anne).

• Quantify:

◦ Everybody loves somebody
∀x∃yLoves(x, y)

First-order logic lets us capture arguments like:

All men are mortal
Socrates is a man
Therefore Socrates is mortal

All prime numbers are integers
7 is a prime number
Therefore 7 is an integer

29

Syntax of First-Order Logic

We have:

• constant symbols : Alice, Bob

• variables: x, y, z, . . .

• predicate symbols of each arity: P , Q, R, . . .

◦ A unary predicate symbol takes one argument:
P (Alice), Q(z)

◦ A binary predicate symbol takes two arguments:
Loves(Bob,Alice), Taller(Alice,Bob).

An atomic expression is a predicate symbol together
with the appropriate number of arguments.

• Atomic expressions act like primitive propositions in
propositional logic

◦ we can apply ∧, ∨, ¬ to them

◦ we can also quantify the variables that appear in
them

Typical formula:

∀x∃y(P (x, y)⇒ ∃zQ(x, z))

30


