
Var(cX)

Claim: Var(cX) = c2Var(X)

Proof:
Var(cX)

= E((cX)2)− (E(cX))2

= c2(E(X2)− c2(E(X))2

= c2Var(X)
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Independent Random Variables

Claim: If X and Y are independent, E(XY ) = E(X)E(Y )
and Cov(X,Y ) = 0.

Proof:

E(XY )
= Σs(XY )(s) Pr(s)
= ΣxΣyΣ{s:X(s)=x , Y (s)=y}X(s) · Y (s) · Pr(s)
= ΣxΣyΣ{s:X(s)=x , Y (s)=y}x · y · Pr(s)
= ΣxΣyx · y · Pr(X = x ∩ Y = y)
= ΣxΣyx · y · Pr(X = x) · Pr(Y = y) [independence]
= Σxx · Pr(X = x)Σyy · Pr(Y = y)
= E(X) · E(Y ).

Cov(X,Y ) = E(XY )− E(X)E(Y ) = 0

Corollary: If X and Y are independent

Var(X + Y ) = Var(X) + Var(Y ).
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The variance of Bn,p

Corollary: If X1, . . . , Xn are mutually independent then

Var(X1+X2+. . .+Xn) = Var(X1)+Var(X2)+. . .+Var(Xn).

Proof: By induction. One subtlety: need to show that
X1 + . . . + Xk−1 is independent of Xk.

Let X be a Bn,p random variable. Then X = Σn
k=1Xk

where Xk are independent Bernoulli p random variables.
So

Var(X) = Var(Σn
k=1Xk) = Σn

k=1Var(Xk) = np(1− p).

• For a fixed p the variance increases with n.

• For a fixed n the variance is minimized for p = 0, 1
and maximized for p = 1/2.

◦ Note p(1− p) ≤ 1/4 (by calculus)

Expectation and variance are two ways of compactly de-
scribing a distribution.

• They don’t completely describe the distribution

• But they’re still useful!
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Markov’s Inequality

Theorem: Suppose X is a nonnegative random variable
and α > 0. Then

Pr(X ≥ α) ≤ E(X)

α
.

Proof:
E(X) = Σxx · Pr(X = x)

≥ Σx≥αx · Pr(X = x)
≥ Σx≥αα · Pr(X = x)
= αΣx≥α Pr(X = x)
= α · Pr(X ≥ α)

Example: If X is B100,1/2, then

Pr(X ≥ 100) ≤ 50

100
.

This is not a particularly useful estimate. In fact, Pr(X ≥
100) = 2−100 ∼ 10−30.
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Chebyshev’s Inequality

Theorem: If X is a random variable and β > 0, then

Pr(|X − E(X)| ≥ β) ≤ Var(X)

β2
.

Proof: Let Y = (X − E(X))2. Then

|X − E(X)| ≥ β iff Y ≥ β2.

I.e.,

{s : |X(s)− E(X)| ≥ β} = {s : Y (s) ≥ β2}.
In particular, the probabilities of these events are the
same:

Pr(|X − E(X)| ≥ β) = Pr(Y ≥ β2).

Since Y ≥ 0 by Markov’s inequality

Pr(Y ≥ β2) ≤ E(Y )

β2
.

Finally, note that E(Y ) = E[(X − E(X))2] = Var(X).

• Equivalent statement: Pr(|X−E(X)| ≥ βσX) ≤ 1
β2 .

• Intuitively, the probability of a random variable being
k standard deviations from the mean is ≤ 1/k2.
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Chebyshev’s Inequality: Example

Chebyshev’s inequality gives a lower bound on how well
is X concentrated about its mean.

• Suppose X is B100,1/2 and we want a lower bound on
Pr(40 < X < 60).

• E(X) = 50 and

40 < X < 60 iff |X − 50| < 10

so

Pr(40 < X < 60) = Pr(|X − 50| < 10)
= 1− Pr(|X − 50| ≥ 10).

Now
Pr(|X − 50| ≥ 10) ≤ Var(X)

102

= 100·(1/2)2

100
= 1

4
.

So

Pr(40 < X < 60) ≥ 1− 1

4
=

3

4
.

This is not too bad: the correct answer is ∼ 0.9611 (will
calculate this using Central Limit Theorem).
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The law of large numbers (LLN)

You suspect the coin you are betting on is biased. You
would like to get an idea on the probability that it lands
heads. How would you do that?

• Obvious answer: toss it n times and estimate p as
|#H|/n

Underlying assumption: as n grows bigger, the sample
mean is a better and better approximation for the ex-
pected value.

• Is there a mathematical justification for this intuition?

7



LLN: Formal Statement

Theorem (Law of Large Numbers): Consider a
sequence of n Bernoulli trials X1, . . . , Xn with the same
(but unknown) success probability p. Let pn = (Σn

k=1Xk)/n.
Then for all ε > 0,

lim
n→∞Pr(|pn − p|) < ε) = 1.

Proof: Let Yn,p = (Σk=1Xk)/n.

• E(Yn,p) = p

• Var(Bn,p/n) = Var(Bn,p)/n
2 = p(1− p)/n

Chebyshev’s Inequality says that

Pr(|Yn,p − E(Yn,p)| ≥ ε) ≤ V ar(Yn,p)

ε2
=

p(1− p)

nε2
.

So
limn→∞ Pr(|Yn,p − p)| ≥ ε) = 0
limn→∞ Pr(|Yn,p − p| < ε) = 1

• Yn,p = p: the sample mean is a random variable

LLN can be generalized:

• Applies to arbitrary iid random variables:

◦ independent and identically distributed

◦ E.g., could be sequence of Poisson variables
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Continuous Distributions

Suppose you wanted to describe the uniform distribution
on the domain [0, 1] = {x : 0 ≤ x ≤ 1}.
For all x ∈ [0, 1], the probability of choosing x is 0. So
how can you describe this probability distribution:

• Using cumulative distribution:

F (x) = Pr(X ≤ x) = x

• Using a density function f(x) such that
∫ x
−∞ f(z)dz = F (x).
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The Normal Distribution

The normal distribution is described by the density func-
tion

f(x) =
1√
2π

e−x2/2

• It’s symmetric around y = 0

∫ ∞
−∞

1√
2π

e−x2/2dx = 1

• 1√
2π

is a normalization factor to make the integral 1.

The normal distribution is the famous “bell curve”.
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The Central Limit Theorem

The normal distribution = limit of normalized binomials.

• Let X1, . . . , Xn be iid Bernoulli with mean p

• Let Yn,p = (X1 + · · · + Xn)/n. Recall

◦ E(Yn,p) = p

◦ Var(Yn,p) = p(1− p)/n, so σYn,p =
√

p(1− p)/n

• Let Zn,p = (Yn,p − p)/
√

p(1− p)/n

• Zn,p is a “normalized binomial”

◦ E(Zn,p) = 0; σZn,p = 1

Theorem (Central Limit Theorem): If N is the
normal distribution, then for all p with 0 < p < 1,

lim
n→∞Pr(c ≤ Zn,p ≤ d) = Pr(c ≤ N ≤ d).
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Some Pictures
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n = 70, p = 0.5:
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CLT: Examples

Example 1: A fair die is rolled 600 times. What is the
probability of getting 1 between 90 and 110 times.

Let X600,1/6 be the random variable that describes the
number of 1’s in 600 tosses.

• E(X600,1/6/600) = 1/6; σX600,1/6/600 =
√

(1/6)(5/6)/600

• By the CLT,

Z =
X600,1/6/600− 1/6

√

(1/6)(5/6)/600
=

√

√

√

√

√

√

6

5







X600,1/6− 100

10







is approximately normally distributed

• Pr(90 ≤ X600,1/6 ≤ 110) = Pr(−
√

6/5 ≤ Z ≤
√

6/5)

•
√

6/5 ≈ 1.095

• Table (DAM3, p. 581) says Pr(N ≤ 1.09) = .8621
and Pr(N ≤ 1.10) = .8643

◦ Split the difference; take Pr(N ≤ 1.095) ≈ .8632

Pr(−1.095 ≤ N ≤ 1.095)
= Pr(N ≤ 1.095)− Pr(N ≤ −1.095)
= Pr(N ≤ 1.095)− Pr(N > 1.095) [by symmetry]
= .8632− (1− .8632) = .7264

Bottom line: the probability of getting 1 between 90 and
110 times is about .7264.
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Polling

Example 2: 100 people are chosen at random and asked
if they prefer B or K; 62 say K. What is the probability
that between 52% and 72% actually support K?

Let X be the random variable that gives the number of
100 people that support K.

• In each state s, a different sample of 100 is chosen.
X(s) is # supporting K in the sample chosen in s.

X is distributed as Bp,100, where p is the actual fraction
that support K. Define

Z =
X
100
− p

√

p(1− p)/100
=

10
√

p(1− p)







X

100
− p







Z is approximately normally distributed.

Pr(|X/100− p| ≤ .1) = Pr(|Z| ≤ 1/
√

p(1− p))

Problem: we don’t know p.

• But a little calculus shows p(1− p) ≤ 1/4, so

Pr(|Z| ≤ 1/
√

p(1− p))
≥ Pr(|Z| ≤ 2)
= Pr(Z ≤ 2)− Pr(Z ≤ −2)
= Pr(Z ≤ 2)− Pr(Z > 2)
= .9772− (1− .9772) ≈ .954
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Bottom line: With probability > .95, the sample mean is
within .1 of the true mean, if the sample size is 100.

Example 3: How many people have to be polled to
ensure that the probability that the sample mean is within
.03 of the true mean is greater than .95?

• I.e., want to be almost certain that the error is ±3%.

Let Xn be sample mean (fraction of people who say K)
in sample of size n. Define

Z =
Xn/n− p

√

p(1− p)/n

Pr(|Xn/n− p| ≤ .03)
= Pr(|Z| ≤ .03/

√

p(1− p)/n)
≥ Pr(|Z| ≤ (.03)2

√
n [since p(1− p) ≤ 1/4]

Want to choose n so that Pr(|Z| ≤ .06
√

n) ≥ .95

• From table: n = 1067

Bottom line: No matter what the total population, a
random sample of size 1067 gives you an error of ±3%
with very high confidence.

• How do you know your sample is random?

• Telephone samples miss people with no telephone,
people with weird hours.
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CS Applications of Probability:
Primality Testing

Recall idea of primality testing:

• Choose b between 1 and n at random

• Apply an easily computable (deterministic) test T (b, n)
such that

◦ T (b, n) = 1 (for all b) if n is prime.

◦ There are lots of b’s for which T (b, n) = 0 if n is
not prime.

∗ In fact, for the standard test T , for at least 1/3
of the b’s between 1 and n, T (b, n) = 0 if n is
composite

So here’s the algorithm:

Input n [number whose primality is to be checked]
Output Prime [Want Prime = 1 iff n is prime]
Algorithm Primality

for k from 1 to 100 do
Choose b at random between 1 and n
If T (b, n) = 0 return Prime = 0

endfor
return Prime = 1.
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Probabilistic Primality Testing:
Analysis

If n is composite, what is the probability that algorithm
returns Prime = 1?

• (2/3)100 < (.2)25 ≈ 10−70

• I wouldn’t lose sleep over mistakes!

• if 10−70 is unacceptable, try 200 random choices.

How long will it take until we find a witness

• Expected number of steps is ≤ 3

What is the probability that it takes k steps to find a
witness?

• (2/3)k−1(1/3) (this is the geometric distribution)

Bottom line: the algorithm is extremely fast and almost
certainly gives the right results.
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An Average-Case Analysis

Remember this algorithm?

Input n [n > 1; number of items]
x1, . . . , xn [Items in set]

Output m [Maximum value]
Algorithm MaxNumber

m← x1

for k from 2 to n do
if xk > m then m← xk

endfor

How many times is m assigned a new value?

Let Y be the number of times is m assigned a new value

• Y is a random variable

• For each state (permutation) Y gives # assignments.

Let Xk = 1 if m is assigned in kth iteration; 0 otherwise

• Xk = 1 if xk > x1, . . . , xk−1

• Pr(Xk = 1) = 1/k

• Y = X1 + · · · + Xn

• E(Y ) = ∑n
k=1

1
k

• By calculus: log(n)− 1 < E(Y ) < log(n)
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