Probability Distributions

If X is a random variable on sample space S, then the
probablity that X takes on the value ¢ is

PriX=c¢)=Pr({se S| X(s) =c}
Similarly,

Pr(X <c¢)=Pr({s€ S| X(s) < c}.
This makes sense since the range of X is the real numbers.
Example: In the coin example,

Pr(#H =2) =4/9 and Pr(#H <1)=5/9

Given a probability measure Pr on a sample space S and

a random variable X, the probability distribution asso-
clated with X is fx(x) = Pr(X = z).

e fy is a probability measure on the real numbers.

The cumulative distribution associated with X is
Fx(z)=Pr(X <)

The Finite Uniform Distribution

The finite uniform distribution is an equiprobable distri-

bution. If S = {z1,...,z,}, where 21 < @9 < ... < x,
then:

flzy) =1/n

F(xy) =k/n

An Example With Dice

Suppose S is the sample space corresponding to tossing
a pair of fair dice: {(¢,7) | 1 <14,j <6}

Let X be the random variable that gives the sum:

o« X(ij)=i+]

fx(12) = Pr(X = 12) = Pr({(6,6)}) = 1/36
Can similarly compute the cumulative distribution:

Fx(2) = fx(2) =1/36
Fx(3) = fx(2) + fx(3) = 3/36

Fy(12) =1

The Binomial Distribution

Suppose there is an experiment with probability p of suc-
cess and thus probability ¢ = 1 — p of failure.

e For example, consider tossing a biased coin, where
Pr(h) = p. Getting “heads” is success, and getting
tails is failure.

Suppose the experiment is repeated independently n times.
e For example, the coin is tossed n times.

This is called a sequence of Bernoulli trials.

Key features:
e Only two possibilities: success or failure.

e Probability of success does not change from trial to
trial.

e The trials are independent.



What is the probability of k successes in n trials?
Suppose n = 5 and k = 3. How many sequences of 5 coin
tosses have exactly three heads?

e hhhtt

e hhtht

e hhtth

C'(5, 3) such sequences!

What is the probability of each one?
p(1—p)?

Therefore, probability is C/(5, 3)p3(1 — p)*.

Let By, (k) be the probability of getting k successes in n
Bernoulli trials with probability p of success.

B, p(k) = C(n, E)ypt —pyn*

Not surprisingly, By, ,, is called the Binomal Distribution.

Deriving the Poisson

Poisson distribution = limit of binomial distributions.
Suppose at most one call arrives in each second.
e Since A calls come each minute, expect about A/60
each second.
e The probability that k calls come is Bg x/60(k)
This model doesn’t allow more than one call/second.
What's so special about 607 Suppose we divide one
minute into n time segments.
e Probability of getting a call in each segment is A/n.
e Probability of getting k calls in a minute is
Bn)\/nu{:)
= C(n, k)(\/n)f(1 =) *
— O(n k) () (1=
= C(n,k) 1—X ( - 5)

k N k n
= Gt () (1=2)
Now let n — oo:

o lim, .o (1 — %)n =e A

k
. L (1
o lim, (nﬁk)! (ﬁ) =1

—AN

Conclusion: lim, o By \/n(k) = €75
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The Poisson Distribution

A large call center receives, on average, A calls/minute.

e What is the probability that exactly k calls come dur-
ing a given minute?

Understanding this probability is critical for staffing!
e Similar issues arise if a printer receives, on average A
jobs/minute, a site gets A hits/minute, . ..

This is modelled well by the Poisson distribution with
parameter A:

filk) = e_A%I;
o fr0)=¢?
o fi(l) =\
o /A(2) = e N2)2
e~ is a normalization constant, since
LA+ A2+ 033 4. = ¢

New Distributions from Old

If X and Y are random variables on a sample space S,
sois X +Y, X +2Y, XY sin(X), ete.

For example,
o (X +Y)(s) = X(5) + Y(s).
e sin(X)(s) = sin(X(s))

Note sin(X) is a random variable: a function from the
sample space to the reals.



Some Examples

Example 1: A fair dieis rolled. Let X denote the num-
ber that shows up. What is the probability distribution
of Y = X%

{s:Y(s) =k} ={s: X%s) =k}

={s:X(s) = —Vk}U{s: X(s) = Vk}.

Conclusion: fy (k) = fx(Vk) + fx(—VE).
S0 fy(l) = fy(4) = fy(g) =" fy(36) = 1/6.
fr(k)=0if k ¢ {1,4,9, 16,25, 36}.

Example 2: A coin is flipped. Let X be 1 if the coin
shows H and -1if T. Let Y = X?2.

elnthiscase Y =1, s0Pr(Y =1)=1.
Example 3: If two dice are rolled, let X be the number

that comes up on the first dice, and Y the number that
comes up on the second.

e Formally, X((4,7)) =4, Y((¢,7)) = J.

The random variable X +Y is the total number showing.

Independent random variables

In a roll of two dice, let X and Y record the numbers on
the first and second die respectively.

e What can you say about the events X =3, Y =27
e What about X =7 and Y = 57

Definition: The random variables X and Y are inde-
pendent if for every x and y the events X =z and Y =y
are independent.

Example: X and Y above are independent.

Definition: The random variables Xy, Xo,..., X, are
mutually independent if, for every x1,zo. .., 2,

Pr(Xi=x1,...,Xp=2,) =Pr(X1 =21) ... Pr(X,, = z,,)

Example: X}, the success indicators in n Bernoulli tri-
als, are independent.
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Example 4: Suppose we toss a biased coin n times
(more generally, we perform n Bernoulli trials). Let X
describe the outcome of the kth coin toss: X = 1 if the
kth coin toss is heads, and 0 otherwise.

How do we formalize this?

e What’s the sample space?

Notice that ¥7_; X} describes the number of successes of
n Bernoulli trials.
o [f the probability of a single success is p, then X7_; X},
has distribution B,

o The binomial distribution is the sum of Bernoullis

Pairwise vs. mutual independence

Mutual independence implies pairwise independence; the
converse may not be true:
Example 1: A ball is randomly drawn from an urn
containing 4 balls: one blue, one red, one green and one
multicolored (red + blue + green)x
e Let X, Xy and X3 denote the indicators of the events
the ball has (some) blue, red and green respectively.

e Pr(X;=1)=1/2,fori=1,2,3

X1 =0[X;=1
X1 and X5 independent: X5 =0 1/4 1/4
Xo=1 1/4] 1/4

Similarly, Xy and X3 are independent; so are X5 and X3.
Are X7, X5 and X3 independent? No!
PI‘(Xlz].mXQZ lﬂng 1) = 1/4
PI"(Xl = 1) PI"(XQ = 1) Pl"(Xg = 1) = 1/8
Example 2: Suppose X; and X are bits (0 or 1) chosen
uniformly at random; X3 = X; & Xs.

e X1, X are independent, as are X1, X3 and Xy, X3
e But X;, Xy, and X3 are not mutually independent
o X and X5 together determine X3!
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The distribution of X +Y

Suppose X and Y are independent random variables whose
range is included in {0, 1,...,n}. Fork € {0,1,...,2n},

X+Y=k=U_(X=j)nY =k—j)).
Note that some of the events might be empty
e Eg. X =k is bound to be empty if k > n.
This is a disjoint union so

Pr(X LY = k)
i_ (X - ] nY =k - ])
Yo Pr(X =j4)Pr(Y =k —j) [by independence]

Expected Value

Suppose we toss a biased coin, with Pr(h) = 2/3. If the
coin lands heads, you get $1; if the coin lands tails, you
get $3. What are your expected winnings?

e 2/3 of the time you get $1;
1/3 of the time you get $3

e (2/3x1)+(1/3x3)=5/3

What’s a good way to think about this? We have a ran-
dom variable W (for winnings):

e W(h)=1
. W(t) =
The expectation of W is

E(W) =Pr(h)W(h) + Pr(t)W (1)
=Pr(W=1)x1+Pr(W =3)x3

More generally, the expected value of random variable X
on sample space S is

EX)=%2Pr(X =x)

An equivalent definition:

BE(X) = YesX(s) Pr(s)
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Example: The Sum of Binomials

Suppose X has distribution B,, ,,, Y has distribution B,,, ,,,
and X and Y are independent.

Pr(X LY = k)

i o PrX=jNnY=k—j) [sum rule
E[ o Pr(X =j)Pr(Y =k —j)  [independence]
Sio()p’ (L= p)" (2 )pt I (L = p)
Zf_o(;)(ﬁ)pk(l p)mm ’
= (S0 )1 =yt
_ <7hl:m>pk(1 _ p)n+mfk

Thus, X + Y has distribution B,, 1, .

An easier argument: Perform n +m Bernoulli trials. Let
X be the number of successes in the first n and let Y be
the number of successes in the last m. X has distribution
B, ,, Y has distribution B,, ,, X and Y are independent,
and X 4+ Y is the number of successes in all n +m trials,
and so has distribution B4y, .

Example: What is the expected count when two dice
are rolled?

Let X be the count:

E(X)
= ElQZZPI“(X i)
i2§§3+3 +43 .+7%+...+12%
= 7
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Expectation of Binomials

What is E(B, ), the expectation for the binomial distri-
bution B,

e How many heads do you expect to get after n tosses
of a biased coin with Pr(h) = p?

Method 1: Use the definition and crank it out:

n n—k
1—
(=)

This looks awful, but it can be calculated ...

E<Bn,p> = Z:ok

Method 2: Use Induction; break it up into what hap-
pens on the first toss and on the later tosses.

e On the first toss you get heads with probability p
and tails with probability 1 — p. On the last n — 1
tosses, you expect E(B,_1,) heads. Thus, the ex-
pected number of heads is:

E(Byp) = p(1+ E(Ba-1,)) + (1 — p)(E(Bn-1,))
=p+ E(anl,p)
E(Bl,p) =P

Now an easy induction shows that E(B, ;) = np.

There’s an even easier way . ..
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Example 1: Back to the expected value of tossing two
dice:

Let X7 be the count on the first die, X5 the count on the
second die, and let X be the total count.

Notice that
E(X))=EBE(Xy)=(1+2+3+4+5+6)/6=35

E(X)=E(Xi+X,) = E(X))+ E(X;) =35+35="7

Example 2: Back to the expected value of B,, .

Let X be the total number of successes and let X}, be the
outcome of the kth experiment, k =1,...,n:

E(Xy)=p-1+(1-p)-0=p

X:Xl+"'+X71
Therefore

E(X)=FE(X))+---+ E(X,) =np.
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Expectation is Linear

Theorem: E(X +Y)=E(X)+ E(Y)
Proof: Recall that
E(X) = Socs Pr(s)X(s)
Thus,
EX+Y) =EesPr(s)(X +Y)(s)
= Yes Pr(s)X(s) + Lses Pr(s)Y (s)
— E(X) + E(Y).
Theorem: E(aX) = aF(X)
Proof:
E(aX) = Xses Pr(s)(aX)(s) = a¥ses X (s) = aE(X).

Expectation of Poisson Distribution

Let X be Poisson with parameter A: fy (k) = e’A’z—: for

keN.

ok
B(X) = 5 k- e A
= AN e

Ah=1
(k=1)!
00 AN
= ATXpe
=A

Does this make sense?

e Recall that, for example, X models the number of
incoming calls for a tech support center whose average
rate per minute is A.
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Expectation of geometric distribution

Consider a sequence of Bernoulli trials. Let X denote the
number of the first successful trial.

e [.g.. the first time you see heads
X has a geometric distribution.
fx(k)=1-p"'p  keN*.

e The probability of seeing heads for the first time on
the kth toss is the probability of getting & — 1 tails
followed by heads

e This is also called a negative binomial distribution
of order 1.

o The negative binomial of order n gives the proba-
bility that it will take & trials to have n successes
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Conditional Expectation

E(X | A) is the conditional expectation of X given A.
EX|A) =X2Pr(X =2 |4
=Y, zPr(X =2nA)/Pr(A4)

Theorem: For all events A such that Pr(A), Pr(4) > 0:
E(X)=E(X | A)Pr(A)+ E(X | A)Pr(A)

Proof:

E(X)

Y,aPr(X =)

Yx(Pr((X =z)NA)+ Pr((X = z) N A4))

= S,z(Pr(X =z | A)Pr(A) + Pr(X =z | A) Pr(A)

E(X | A)Pr(A)+ E(X | A)Pr(A)
Example: 1 toss a fair die. If it lands with 3 or more,
[ toss a coin with bias p; (towards heads). If it lands
with less than 3, I toss a coin with bias py. What is the
expected number of heads?
Let A be the event that the die lands with 3 or more.
Pr(A) =2/3
E(#H) = E(#H | A)Pr(A) + E(#H | A) Pr(4)
_ 2 1
= P13 T P23
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= Sy(x Pr(X = | A)Pr(A)) + (x Pr(X =z | 4) Pr(A))

What is the probability that X is finite?
S fx(k) = 51 —p)'p

= pE;?';U(l - P)j
_ 1
= Pi(ip)

Can now compute E(X):

E(X) = Sk - (1- pZ‘zlp .
P =p) 1)
0 k—
B —p)
=pl(l/p)+ (A =p)/p+ 1 —p?/p+-]
=1+(l=p+ (1 =p+--
= 1/p
So, for example, if the success probability p is 1/3, it will
take on average 3 trials to get a success.

e All this computation for a result that was intuitively
clear all along ...
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Variance and Standard Deviation

Expectation summarizes a lot of information about a ran-
dom variable as a single number. But no single number
can tell it all.

Compare these two distributions:
e Distribution 1:
Pr(49) = Pr(51) = 1/4; Pr(50) =1/2.
e Distribution 2: Pr(0) = Pr(50) = Pr(100) = 1/3.

Both have the same expectation: 50. But the first is much
less “dispersed” than the second. We want a measure of
dispersion.

e One measure of dispersion is how far things are from
the mean, on average.

Given a random variable X, (X(s) — E(X))? measures
how far the value of s is from the mean value (the expec-
tation) of X. Define the variance of X to be

Var(X) = E((X — E(X))?) = Zses Pr(s) (X(s) — E(X))*

The standard deviation of X is
ox = Var(X) = S5 Pr(s)(X(s) — E(X))?
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Why not use | X (s) — E(X)| as the measure of distance
instead of variance?
e (X(s)— E(X))? turns out to have nicer mathematical

properties.

e In R", the distance between (1, . .., x,) and (y1, . - ., Yn)
is \/<11 —y)? + e (= yn)?

Example:

e The variance of distribution 1 is
1 1 1
61 50)% + 5(50 - 50)% + 149 - 50)% = -

e The variance of distribution 2 is

1 1 5000
§<100 —50)% + §(50 —50)% + 3(0 —50)% =
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Var(X +7Y)

Definition: The covariance of X and Y is
Cov(X,Y) = E(XY) — E(X) - E(Y)
e Cov(X, X) = Var(X)
e Cov(X, —X) = —Var(X)
o If X and Y are independent, Cov(X,Y) =0
[proved soon]
e covariance provides a measure of correlation:
Cor(X,Y) = Cov(X,Y)/oxoy

o Cor(X,X) =1

o Cor(X, —X) = —

o Cor(X,Y) =0if X and Y are independent
Claim: Var(X+Y) = Var(X) 4+ Var(Y) + 2 - Cov(X,Y).
Proof: E(X+Y)=E(X)+ E(Y), so

Var(X +7Y)
= B[(X +Y)"] = (BE(X) + E(Y))?
= B(X?+2XY +Y?) — (B(X)’ + 2B(X)E(Y) + E(Y)?)
= [B(X?) - E(X)’] + [E(Y?) - E(Y)?
+2[E(XY) — E(X)E(Y)]
= Var(X) + Var(Y) + 2Cov(X,Y)
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Variance: Examples

Let X be Bernoulli, with probability p of success. Recall
that E(X) = p.

Var(X) = (0—p)*- (1—p)+(1—p)*-p
=p(1 =p)[p+ (1 —p)]
=p(l—p)

Theorem: Var(X) = E(X?) — E(X)2,

Proof:

E(X - B(X))" = B(X* = 2B(X)X + B(X)")
= E(X?) - 2E(X)E(X)+ E(E(X)?)
= EB(X?) —2F(X)*+ E(X)*
=E(X? - E(X)?

Example: Suppose X is the outcome of a roll of a fair
die.

e Recall E(X) =7/2.
e B(X?) =12 {427} 4+ ... 46

o So Var(X) =% — (1)* =
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