
Probability Distributions

If X is a random variable on sample space S, then the
probablity that X takes on the value c is

Pr(X = c) = Pr({s ∈ S | X(s) = c}
Similarly,

Pr(X ≤ c) = Pr({s ∈ S | X(s) ≤ c}.
This makes sense since the range of X is the real numbers.

Example: In the coin example,

Pr(#H = 2) = 4/9 and Pr(#H ≤ 1) = 5/9

Given a probability measure Pr on a sample space S and
a random variable X , the probability distribution asso-
ciated with X is fX(x) = Pr(X = x).

• fX is a probability measure on the real numbers.

The cumulative distribution associated with X is
FX(x) = Pr(X ≤ x).
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An Example With Dice

Suppose S is the sample space corresponding to tossing
a pair of fair dice: {(i, j) | 1 ≤ i, j ≤ 6}.
Let X be the random variable that gives the sum:

• X(i, j) = i + j

fX(2) = Pr(X = 2) = Pr({(1, 1)}) = 1/36
fX(3) = Pr(X = 3) = Pr({(1, 2), (2, 1)}) = 2/36
...
fX(7) = Pr(X = 7) = Pr({(1, 6), (2, 5), . . . , (6, 1)}) = 6/36
...
fX(12) = Pr(X = 12) = Pr({(6, 6)}) = 1/36

Can similarly compute the cumulative distribution:

FX(2) = fX(2) = 1/36
FX(3) = fX(2) + fX(3) = 3/36
...
FX(12) = 1
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The Finite Uniform Distribution

The finite uniform distribution is an equiprobable distri-
bution. If S = {x1, . . . , xn}, where x1 < x2 < . . . < xn,
then:

f(xk) = 1/n

F (xk) = k/n
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The Binomial Distribution

Suppose there is an experiment with probability p of suc-
cess and thus probability q = 1 − p of failure.

• For example, consider tossing a biased coin, where
Pr(h) = p. Getting “heads” is success, and getting
tails is failure.

Suppose the experiment is repeated independently n times.

• For example, the coin is tossed n times.

This is called a sequence of Bernoulli trials.

Key features:

• Only two possibilities: success or failure.

• Probability of success does not change from trial to
trial.

• The trials are independent.
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What is the probability of k successes in n trials?

Suppose n = 5 and k = 3. How many sequences of 5 coin
tosses have exactly three heads?

• hhhtt

• hhtht

• hhtth
...

C(5, 3) such sequences!

What is the probability of each one?

p3(1 − p)2

Therefore, probability is C(5, 3)p3(1 − p)2.

Let Bn,p(k) be the probability of getting k successes in n
Bernoulli trials with probability p of success.

Bn,p(k) = C(n, k)pk(1 − p)n−k

Not surprisingly, Bn,p is called the Binomal Distribution.
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The Poisson Distribution

A large call center receives, on average, λ calls/minute.

• What is the probability that exactly k calls come dur-
ing a given minute?

Understanding this probability is critical for staffing!

• Similar issues arise if a printer receives, on average λ
jobs/minute, a site gets λ hits/minute, . . .

This is modelled well by the Poisson distribution with
parameter λ:

fλ(k) = e−λλk

k!

• fλ(0) = e−λ

• fλ(1) = e−λλ

• fλ(2) = e−λλ2/2

e−λ is a normalization constant, since

1 + λ + λ2/2 + λ3/3! + · · · = eλ
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Deriving the Poisson

Poisson distribution = limit of binomial distributions.

Suppose at most one call arrives in each second.

• Since λ calls come each minute, expect about λ/60
each second.

• The probability that k calls come is B60,λ/60(k)

This model doesn’t allow more than one call/second.
What’s so special about 60? Suppose we divide one
minute into n time segments.

• Probability of getting a call in each segment is λ/n.

• Probability of getting k calls in a minute is

Bn,λ/n(k)
= C(n, k)(λ/n)k(1 − λ

n)n−k

= C(n, k)
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Now let n → ∞:

• limn→∞
(

1 − λ
n

)n
= e−λ

• limn→∞
n!

(n−k)!

(

1
n−λ

)k
= 1

Conclusion: limn→∞ Bn,λ/n(k) = e−λλk

k!
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New Distributions from Old

If X and Y are random variables on a sample space S,
so is X + Y , X + 2Y , XY , sin(X), etc.

For example,

• (X + Y )(s) = X(s) + Y (s).

• sin(X)(s) = sin(X(s))

Note sin(X) is a random variable: a function from the
sample space to the reals.
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Some Examples

Example 1: A fair die is rolled. Let X denote the num-
ber that shows up. What is the probability distribution
of Y = X2?

{s : Y (s) = k} = {s : X2(s) = k}
= {s : X(s) = −

√
k} ∪ {s : X(s) =

√
k}.

Conclusion: fY (k) = fX(
√

k) + fX(−
√

k).
So fY (1) = fY (4) = fY (9) = · · · fY (36) = 1/6.
fY (k) = 0 if k /∈ {1, 4, 9, 16, 25, 36}.
Example 2: A coin is flipped. Let X be 1 if the coin
shows H and -1 if T . Let Y = X2.

• In this case Y ≡ 1, so Pr(Y = 1) = 1.

Example 3: If two dice are rolled, let X be the number
that comes up on the first dice, and Y the number that
comes up on the second.

• Formally, X((i, j)) = i, Y ((i, j)) = j.

The random variable X +Y is the total number showing.
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Example 4: Suppose we toss a biased coin n times
(more generally, we perform n Bernoulli trials). Let Xk

describe the outcome of the kth coin toss: Xk = 1 if the
kth coin toss is heads, and 0 otherwise.

How do we formalize this?

• What’s the sample space?

Notice that Σn
k=1Xk describes the number of successes of

n Bernoulli trials.

• If the probability of a single success is p, then Σn
k=1Xk

has distribution Bn,p

◦ The binomial distribution is the sum of Bernoullis
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Independent random variables

In a roll of two dice, let X and Y record the numbers on
the first and second die respectively.

• What can you say about the events X = 3, Y = 2?

• What about X = i and Y = j?

Definition: The random variables X and Y are inde-
pendent if for every x and y the events X = x and Y = y
are independent.

Example: X and Y above are independent.

Definition: The random variables X1, X2, . . . , Xn are
mutually independent if, for every x1, x2 . . . , xn

Pr(X1 = x1, . . . , Xn = xn) = Pr(X1 = x1) . . . Pr(Xn = xn)

Example: Xk, the success indicators in n Bernoulli tri-
als, are independent.
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Pairwise vs. mutual independence

Mutual independence implies pairwise independence; the
converse may not be true:

Example 1: A ball is randomly drawn from an urn
containing 4 balls: one blue, one red, one green and one
multicolored (red + blue + green)x

• Let X1, X2 and X3 denote the indicators of the events
the ball has (some) blue, red and green respectively.

• Pr(Xi = 1) = 1/2, for i = 1, 2, 3

X1 and X2 independent:
X1 = 0 X1 = 1

X2 = 0 1/4 1/4
X2 = 1 1/4 1/4

Similarly, X1 and X3 are independent; so are X2 and X3.

Are X1, X2 and X3 independent? No!

Pr(X1 = 1 ∩ X2 = 1 ∩ X3 = 1) = 1/4
Pr(X1 = 1) Pr(X2 = 1) Pr(X3 = 1) = 1/8.

Example 2: Suppose X1 and X2 are bits (0 or 1) chosen
uniformly at random; X3 = X1 ⊕ X2.

• X1, X2 are independent, as are X1, X3 and X2, X3

• But X1, X2, and X3 are not mutually independent

◦ X1 and X2 together determine X3!
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The distribution of X + Y

Suppose X and Y are independent random variables whose
range is included in {0, 1, . . . , n}. For k ∈ {0, 1, . . . , 2n},

X + Y = k = ∪k
j=0 ((X = j) ∩ (Y = k − j)) .

Note that some of the events might be empty

• E.g., X = k is bound to be empty if k > n.

This is a disjoint union so

Pr(X + Y = k)
= Σk

j=0 Pr(X = j ∩ Y = k − j)
= Σk

j=0 Pr(X = j) Pr(Y = k − j) [by independence]
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Example: The Sum of Binomials

Suppose X has distribution Bn,p, Y has distribution Bm,p,
and X and Y are independent.

Pr(X + Y = k)
= Σk

j=0 Pr(X = j ∩ Y = k − j) [sum rule]
= Σk

j=0 Pr(X = j) Pr(Y = k − j) [independence]
= Σk

j=0

(

n
j

)

pj(1 − p)n−j
(

m
k−j

)

pk−j(1 − p)m−k+j

= Σk
j=0

(

n
j

)(

m
k−j

)

pk(1 − p)n+m−k

= (Σk
j=0

(

n
j

)(

m
k−j

)

)pk(1 − p)n+m−k

=
(

n+m
k

)

pk(1 − p)n+m−k

Thus, X + Y has distribution Bn+m,p.

An easier argument: Perform n + m Bernoulli trials. Let
X be the number of successes in the first n and let Y be
the number of successes in the last m. X has distribution
Bn,p, Y has distribution Bm,p, X and Y are independent,
and X + Y is the number of successes in all n + m trials,
and so has distribution Bn+m,p.
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Expected Value

Suppose we toss a biased coin, with Pr(h) = 2/3. If the
coin lands heads, you get $1; if the coin lands tails, you
get $3. What are your expected winnings?

• 2/3 of the time you get $1;
1/3 of the time you get $3

• (2/3 × 1) + (1/3 × 3) = 5/3

What’s a good way to think about this? We have a ran-
dom variable W (for winnings):

• W (h) = 1

• W (t) = 3

The expectation of W is

E(W ) = Pr(h)W (h) + Pr(t)W (t)
= Pr(W = 1) × 1 + Pr(W = 3) × 3

More generally, the expected value of random variable X
on sample space S is

E(X) = Σxx Pr(X = x)

An equivalent definition:

E(X) = Σs∈SX(s) Pr(s)
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Example: What is the expected count when two dice
are rolled?

Let X be the count:

E(X)
= Σ12

i=2i Pr(X = i)
= 2 1

36 + 3 2
36 + 4 3

36 + · · · + 7 6
36 + · · · + 12 1

36
= 252

36
= 7
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Expectation of Binomials

What is E(Bn,p), the expectation for the binomial distri-
bution Bn,p

• How many heads do you expect to get after n tosses
of a biased coin with Pr(h) = p?

Method 1: Use the definition and crank it out:

E(Bn,p) = Σn
k=0k











n

k











pk(1 − p)n−k

This looks awful, but it can be calculated ...

Method 2: Use Induction; break it up into what hap-
pens on the first toss and on the later tosses.

• On the first toss you get heads with probability p
and tails with probability 1 − p. On the last n − 1
tosses, you expect E(Bn−1,p) heads. Thus, the ex-
pected number of heads is:

E(Bn,p) = p(1 + E(Bn−1,p)) + (1 − p)(E(Bn−1,p))
= p + E(Bn−1,p)

E(B1,p) = p

Now an easy induction shows that E(Bn,p) = np.

There’s an even easier way . . .
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Expectation is Linear

Theorem: E(X + Y ) = E(X) + E(Y )

Proof: Recall that

E(X) = Σs∈S Pr(s)X(s)

Thus,

E(X + Y ) = Σs∈S Pr(s)(X + Y )(s)
= Σs∈S Pr(s)X(s) + Σs∈S Pr(s)Y (s)
= E(X) + E(Y ).

Theorem: E(aX) = aE(X)

Proof:

E(aX) = Σs∈S Pr(s)(aX)(s) = aΣs∈SX(s) = aE(X).
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Example 1: Back to the expected value of tossing two
dice:
Let X1 be the count on the first die, X2 the count on the
second die, and let X be the total count.

Notice that

E(X1) = E(X2) = (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5

E(X) = E(X1 + X2) = E(X1) + E(X2) = 3.5 + 3.5 = 7

Example 2: Back to the expected value of Bn,p.

Let X be the total number of successes and let Xk be the
outcome of the kth experiment, k = 1, . . . , n:

E(Xk) = p · 1 + (1 − p) · 0 = p

X = X1 + · · · + Xn

Therefore

E(X) = E(X1) + · · · + E(Xn) = np.
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Expectation of Poisson Distribution

Let X be Poisson with parameter λ: fX(k) = e−λλk

k!
for

k ∈ N .

E(X) = Σ∞
k=0k · e−λλk

k!

= λΣ∞
k=1e

−λ λk−1

(k−1)!

= λΣ∞
j=0e

−λλj

j!

= λ

Does this make sense?

• Recall that, for example, X models the number of
incoming calls for a tech support center whose average
rate per minute is λ.
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Expectation of geometric distribution

Consider a sequence of Bernoulli trials. Let X denote the
number of the first successful trial.

• E.g., the first time you see heads

X has a geometric distribution.

fX(k) = (1 − p)k−1p k ∈ N+.

• The probability of seeing heads for the first time on
the kth toss is the probability of getting k − 1 tails
followed by heads

• This is also called a negative binomial distribution
of order 1.

◦ The negative binomial of order n gives the proba-
bility that it will take k trials to have n successes
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What is the probability that X is finite?

Σ∞
k=1fX(k) = Σ∞

k=1(1 − p)k−1p

= pΣ∞
j=0(1 − p)j

= p 1
1−(1−p)

= 1

Can now compute E(X):

E(X) = Σ∞
k=1k · (1 − p)k−1p

= p
[

Σ∞
k=1(1 − p)k−1 + Σ∞

k=2(1 − p)k−1 +

Σ∞
k=3(1 − p)k−1 + · · ·

]

= p[(1/p) + (1 − p)/p + (1 − p)2/p + · · ·]
= 1 + (1 − p) + (1 − p)2 + · · ·
= 1/p

So, for example, if the success probability p is 1/3, it will
take on average 3 trials to get a success.

• All this computation for a result that was intuitively
clear all along . . .
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Conditional Expectation

E(X | A) is the conditional expectation of X given A.

E(X | A) = Σxx Pr(X = x | A)
= Σxx Pr(X = x ∩ A)/ Pr(A)

Theorem: For all events A such that Pr(A), Pr(A) > 0:

E(X) = E(X | A) Pr(A) + E(X | A) Pr(A)

Proof:

E(X)
= Σxx Pr(X = x)
= Σxx(Pr((X = x) ∩ A) + Pr((X = x) ∩ A))
= Σxx(Pr(X = x | A) Pr(A) + Pr(X = x | A) Pr(A))
= Σx(x Pr(X = x | A) Pr(A)) + (x Pr(X = x | A) Pr(A))
= E(X | A) Pr(A) + E(X | A) Pr(A)

Example: I toss a fair die. If it lands with 3 or more,
I toss a coin with bias p1 (towards heads). If it lands
with less than 3, I toss a coin with bias p2. What is the
expected number of heads?

Let A be the event that the die lands with 3 or more.

Pr(A) = 2/3

E(#H) = E(#H | A) Pr(A) + E(#H | A) Pr(A)
= p1

2
3

+ p2
1
3
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Variance and Standard Deviation

Expectation summarizes a lot of information about a ran-
dom variable as a single number. But no single number
can tell it all.

Compare these two distributions:

• Distribution 1:

Pr(49) = Pr(51) = 1/4; Pr(50) = 1/2.

• Distribution 2: Pr(0) = Pr(50) = Pr(100) = 1/3.

Both have the same expectation: 50. But the first is much
less “dispersed” than the second. We want a measure of
dispersion.

• One measure of dispersion is how far things are from
the mean, on average.

Given a random variable X , (X(s) − E(X))2 measures
how far the value of s is from the mean value (the expec-
tation) of X . Define the variance of X to be

Var(X) = E((X − E(X))2) = Σs∈S Pr(s)(X(s) − E(X))2

The standard deviation of X is

σX =
√

Var(X) =
√

Σs∈S Pr(s)(X(s) − E(X))2
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Why not use |X(s) − E(X)| as the measure of distance
instead of variance?

• (X(s)−E(X))2 turns out to have nicer mathematical
properties.

• In Rn, the distance between (x1, . . . , xn) and (y1, . . . , yn)
is

√

(x1 − y1)2 + · · · + (xn − yn)2

Example:

• The variance of distribution 1 is

1

4
(51 − 50)2 +

1

2
(50 − 50)2 +

1

4
(49 − 50)2 =

1

2

• The variance of distribution 2 is

1

3
(100 − 50)2 +

1

3
(50 − 50)2 +

1

3
(0 − 50)2 =

5000

3
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Variance: Examples

Let X be Bernoulli, with probability p of success. Recall
that E(X) = p.

Var(X) = (0 − p)2 · (1 − p) + (1 − p)2 · p
= p(1 − p)[p + (1 − p)]
= p(1 − p)

Theorem: Var(X) = E(X2) − E(X)2.

Proof:

E(X − E(X))2 = E(X2 − 2E(X)X + E(X)2)
= E(X2) − 2E(X)E(X) + E(E(X)2)
= E(X2) − 2E(X)2 + E(X)2

= E(X2) − E(X)2

Example: Suppose X is the outcome of a roll of a fair
die.

• Recall E(X) = 7/2.

• E(X2) = 12 · 1
6

+ 22 · 1
6

+ . . . + 62 · 1
6

= 91
6

• So Var(X) = 91
6 − (7

2)
2 = 35

12.
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Var(X + Y)

Definition: The covariance of X and Y is

Cov(X, Y) = E(XY) − E(X) · E(Y)

• Cov(X, X) = Var(X)

• Cov(X,−X) = −Var(X)

• If X and Y are independent, Cov(X, Y) = 0
[proved soon]

• covariance provides a measure of correlation:

Cor(X, Y) = Cov(X, Y)/σXσY

◦ Cor(X, X) = 1

◦ Cor(X,−X) = −1

◦ Cor(X, Y) = 0 if X and Y are independent

Claim: Var(X + Y) = Var(X) + Var(Y) + 2 ·Cov(X, Y).

Proof: E(X + Y ) = E(X) + E(Y ), so

Var(X + Y)

= E[(X + Y )2] − (E(X) + E(Y ))2

= E(X2 + 2XY + Y 2) − (E(X)2 + 2E(X)E(Y ) + E(Y )2)
= [E(X2) − E(X)2] + [E(Y 2) − E(Y )2]

+2[E(XY ) − E(X)E(Y )]
= Var(X) + Var(Y) + 2Cov(X, Y)
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