Probability Distributions

If X is a random variable on sample space S, then the probability that X takes on the value c is

$$\Pr(X = c) = \Pr(\{s \in S \mid X(s) = c\}\)$$

Similarly,

$$\Pr(X \le c) = \Pr(\{s \in S \mid X(s) \le c\}.$$

This makes sense since the range of X is the real numbers.

Example: In the coin example,

 $\Pr(\#H=2) = 4/9 \text{ and } \Pr(\#H \le 1) = 5/9$

Given a probability measure Pr on a sample space S and a random variable X, the *probability distribution* associated with X is $f_X(x) = \Pr(X = x)$.

• f_X is a probability measure on the real numbers.

The cumulative distribution associated with X is $F_X(x) = \Pr(X \le x).$

An Example With Dice

Suppose S is the sample space corresponding to tossing a pair of fair dice: $\{(i, j) \mid 1 \le i, j \le 6\}$.

Let X be the random variable that gives the sum:

•
$$X(i, j) = i + j$$

 $f_X(2) = \Pr(X = 2) = \Pr(\{(1, 1)\}) = 1/36$
 $f_X(3) = \Pr(X = 3) = \Pr(\{(1, 2), (2, 1)\}) = 2/36$
:
 $f_X(7) = \Pr(X = 7) = \Pr(\{(1, 6), (2, 5), \dots, (6, 1)\}) = 6/36$
:
 $f_X(12) = \Pr(X = 12) = \Pr(\{(6, 6)\}) = 1/36$

Can similarly compute the cumulative distribution:

$$F_X(2) = f_X(2) = 1/36$$

$$F_X(3) = f_X(2) + f_X(3) = 3/36$$

:

$$F_X(12) = 1$$

The Finite Uniform Distribution

1

The finite uniform distribution is an equiprobable distribution. If $S = \{x_1, \ldots, x_n\}$, where $x_1 < x_2 < \ldots < x_n$, then:

$$f(x_k) = 1/n$$
$$F(x_k) = k/n$$

The Binomial Distribution

2

Suppose there is an experiment with probability p of success and thus probability q = 1 - p of failure.

• For example, consider tossing a biased coin, where Pr(h) = p. Getting "heads" is success, and getting tails is failure.

Suppose the experiment is repeated independently n times.

• For example, the coin is tossed *n* times.

This is called a sequence of *Bernoulli trials*.

Key features:

- Only two possibilities: success or failure.
- Probability of success does not change from trial to trial.
- The trials are independent.

What is the probability of k successes in n trials?

Suppose n = 5 and k = 3. How many sequences of 5 coin tosses have exactly three heads?

- \bullet hhhtt
- \bullet hhtht
- \bullet hhtth
- :

C(5,3) such sequences!

What is the probability of each one?

 $p^3(1-p)^2$

Therefore, probability is $C(5,3)p^3(1-p)^2$.

Let $B_{n,p}(k)$ be the probability of getting k successes in n Bernoulli trials with probability p of success.

$$B_{n,p}(k) = C(n,k)p^k(1-p)^{n-k}$$

Not surprisingly, $B_{n,p}$ is called the *Binomal Distribution*.

The Poisson Distribution

A large call center receives, on average, λ calls/minute.

• What is the probability that exactly k calls come during a given minute?

Understanding this probability is critical for staffing!

 Similar issues arise if a printer receives, on average λ jobs/minute, a site gets λ hits/minute, ...

This is modelled well by the *Poisson distribution* with parameter λ :

$$f_{\lambda}(k) = e^{-\lambda} \frac{\lambda'}{k!}$$

•
$$f_{\lambda}(0) = e^{-\lambda}$$

- $f_{\lambda}(1) = e^{-\lambda}\lambda$
- $f_{\lambda}(2) = e^{-\lambda} \lambda^2 / 2$

 $e^{-\lambda}$ is a normalization constant, since

$$1 + \lambda + \lambda^2/2 + \lambda^3/3! + \dots = e^{\lambda}$$

6

Deriving the Poisson

5

Poisson distribution = limit of binomial distributions.

Suppose at most one call arrives in each second.

- Since λ calls come each minute, expect about $\lambda/60$ each second.
- The probability that k calls come is $B_{60,\lambda/60}(k)$

This model doesn't allow more than one call/second. What's so special about 60? Suppose we divide one minute into n time segments.

- Probability of getting a call in each segment is λ/n .
- Probability of getting k calls in a minute is

$$B_{n,\lambda/n}(k) = C(n,k)(\lambda/n)^k (1-\frac{\lambda}{n})^{n-k}$$

= $C(n,k) \left(\frac{\lambda/n}{1-\frac{\lambda}{n}}\right)^k (1-\frac{\lambda}{n})^n$
= $\frac{\lambda^k}{k!} \frac{n!}{(n-k)!} \left(\frac{1}{n-\lambda}\right)^k (1-\frac{\lambda}{n})^n$

7

Now let $n \to \infty$:

•
$$\lim_{n \to \infty} \left(1 - \frac{\lambda}{n}\right)^n = e^{-\lambda}$$

• $\lim_{n \to \infty} \frac{n!}{(n-k)!} \left(\frac{1}{n-\lambda}\right)^k = 1$

Conclusion: $\lim_{n\to\infty} B_{n,\lambda/n}(k) = e^{-\lambda \frac{\lambda^k}{k!}}$

New Distributions from Old

If X and Y are random variables on a sample space S, so is X + Y, X + 2Y, XY, $\sin(X)$, etc.

For example,

- $\bullet \ (X+Y)(s) = X(s) + Y(s).$
- $\sin(X)(s) = \sin(X(s))$

Note sin(X) is a random variable: a function from the sample space to the reals.

8

Some Examples

Example 1: A fair die is rolled. Let X denote the number that shows up. What is the probability distribution of $Y = X^2$?

$$\begin{split} \{s:Y(s)=k\} &= \{s:X^2(s)=k\} \\ &= \{s:X(s)=-\sqrt{k}\} \cup \{s:X(s)=\sqrt{k}\}. \end{split}$$

Conclusion: $f_Y(k) = f_X(\sqrt{k}) + f_X(-\sqrt{k})$. So $f_Y(1) = f_Y(4) = f_Y(9) = \cdots f_Y(36) = 1/6.$ $f_Y(k) = 0$ if $k \notin \{1, 4, 9, 16, 25, 36\}.$

Example 2: A coin is flipped. Let X be 1 if the coin shows H and -1 if T. Let $Y = X^2$.

• In this case $Y \equiv 1$, so $\Pr(Y = 1) = 1$.

Example 3: If two dice are rolled, let X be the number that comes up on the first dice, and Y the number that comes up on the second.

• Formally,
$$X((i, j)) = i, Y((i, j)) = j$$
.

The random variable X + Y is the total number showing.

9

Example 4: Suppose we toss a biased coin *n* times (more generally, we perform *n* Bernoulli trials). Let X_k describe the outcome of the kth coin toss: $X_k = 1$ if the kth coin toss is heads, and 0 otherwise.

How do we formalize this?

• What's the sample space?

Notice that $\sum_{k=1}^{n} X_k$ describes the number of successes of n Bernoulli trials.

- If the probability of a single success is p, then $\sum_{k=1}^{n} X_k$ has distribution $B_{n,n}$
 - The binomial distribution is the sum of Bernoullis

10

Independent random variables

In a roll of two dice, let X and Y record the numbers on the first and second die respectively.

- What can you say about the events X = 3, Y = 2?
- What about X = i and Y = j?

Definition: The random variables X and Y are independent if for every x and y the events X = x and Y = yare independent.

Example: X and Y above are independent.

Definition: The random variables X_1, X_2, \ldots, X_n are mutually independent if, for every x_1, x_2, \ldots, x_n

$$\Pr(X_1 = x_1, \dots, X_n = x_n) = \Pr(X_1 = x_1) \dots \Pr(X_n = x_n)$$

Example: X_k , the success indicators in *n* Bernoulli trials, are independent.

Pairwise vs. mutual independence

Mutual independence implies pairwise independence; the converse may not be true:

Example 1: A ball is randomly drawn from an urn containing 4 balls: one blue, one red, one green and one multicolored (red + blue + green)x

• Let X_1, X_2 and X_3 denote the indicators of the events the ball has (some) blue, red and green respectively.

•
$$\Pr(X_i = 1) = 1/2$$
, for $i = 1, 2, 3$
 X_1 and X_2 independent: $\begin{array}{c|c} X_1 = 0 & X_1 = 1 \\ \hline X_2 = 0 & 1/4 & 1/4 \\ \hline X_2 = 1 & 1/4 & 1/4 \end{array}$

Similarly, X_1 and X_3 are independent; so are X_2 and X_3 . Are X_1 , X_2 and X_3 independent? No!

 $\Pr(X_1 = 1 \cap X_2 = 1 \cap X_3 = 1) = 1/4$ $\Pr(X_1 = 1) \Pr(X_2 = 1) \Pr(X_3 = 1) = 1/8.$

Example 2: Suppose X_1 and X_2 are bits (0 or 1) chosen uniformly at random; $X_3 = X_1 \oplus X_2$.

- X_1, X_2 are independent, as are X_1, X_3 and X_2, X_3
- But X_1, X_2 , and X_3 are not mutually independent
 - $\circ X_1$ and X_2 together determine X_3 !

The distribution of X + Y

Suppose X and Y are independent random variables whose range is included in $\{0, 1, ..., n\}$. For $k \in \{0, 1, ..., 2n\}$,

$$X + Y = k = \bigcup_{i=0}^{k} \left((X = j) \cap (Y = k - j) \right).$$

Note that some of the events might be empty

• E.g., X = k is bound to be empty if k > n.

This is a disjoint union so

Example: The Sum of Binomials

Suppose X has distribution $B_{n,p}$, Y has distribution $B_{m,p}$, and X and Y are independent.

$$\begin{aligned} &\Pr(X+Y=k) \\ &= \sum_{j=0}^{k} \Pr(X=j \cap Y=k-j) \quad [\text{sum rule}] \\ &= \sum_{j=0}^{k} \Pr(X=j) \Pr(Y=k-j) \quad [\text{independence}] \\ &= \sum_{j=0}^{k} \binom{n}{j} p^{j} (1-p)^{n-j} \binom{m}{k-j} p^{k-j} (1-p)^{m-k+j} \\ &= \sum_{j=0}^{k} \binom{n}{j} \binom{m}{k-j} p^{k} (1-p)^{n+m-k} \\ &= (\sum_{j=0}^{k} \binom{n}{j} \binom{m}{k-j}) p^{k} (1-p)^{n+m-k} \\ &= \binom{n+m}{k} p^{k} (1-p)^{n+m-k} \end{aligned}$$

Thus, X + Y has distribution $B_{n+m,p}$.

An easier argument: Perform n + m Bernoulli trials. Let X be the number of successes in the first n and let Y be the number of successes in the last m. X has distribution $B_{n,p}$, Y has distribution $B_{m,p}$, X and Y are independent, and X + Y is the number of successes in all n + m trials, and so has distribution $B_{n+m,p}$.

13

Expected Value

Suppose we toss a biased coin, with Pr(h) = 2/3. If the coin lands heads, you get \$1; if the coin lands tails, you get \$3. What are your expected winnings?

- 2/3 of the time you get \$1;
- 1/3 of the time you get \$3
- $(2/3 \times 1) + (1/3 \times 3) = 5/3$

What's a good way to think about this? We have a random variable W (for winnings):

 $\bullet W(h) = 1$

• W(t) = 3

The expectation of W is

$$\begin{split} E(W) &= \Pr(h)W(h) + \Pr(t)W(t) \\ &= \Pr(W=1) \times 1 + \Pr(W=3) \times 3 \end{split}$$

More generally, the *expected value* of random variable X on sample space S is

$$E(X) = \Sigma_x x \Pr(X = x)$$

An equivalent definition:

$$E(X) = \sum_{s \in S} X(s) \operatorname{Pr}(s)$$

Example: What is the expected count when two dice are rolled?

14

Let X be the count:

$$E(X) = \sum_{i=2}^{12} i \Pr(X=i) = 2\frac{1}{36} + 3\frac{2}{36} + 4\frac{3}{36} + \dots + 7\frac{6}{36} + \dots + 12\frac{1}{36} = \frac{252}{36} = 7$$

Expectation of Binomials

What is $E(B_{n,p})$, the expectation for the binomial distribution $B_{n,p}$

• How many heads do you expect to get after n tosses of a biased coin with Pr(h) = p?

Method 1: Use the definition and crank it out:

$$E(B_{n,p}) = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k}$$

This looks awful, but it can be calculated ...

Method 2: Use Induction; break it up into what happens on the first toss and on the later tosses.

• On the first toss you get heads with probability p and tails with probability 1 - p. On the last n - 1 tosses, you expect $E(B_{n-1,p})$ heads. Thus, the expected number of heads is:

$$E(B_{n,p}) = p(1 + E(B_{n-1,p})) + (1 - p)(E(B_{n-1,p}))$$

= p + E(B_{n-1,p})
$$E(B_{1,p}) = p$$

Now an easy induction shows that $E(B_{n,p}) = np$.

There's an even easier way ...

Example 1: Back to the expected value of tossing two dice:

Let X_1 be the count on the first die, X_2 the count on the second die, and let X be the total count.

Notice that

$$E(X_1) = E(X_2) = (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5$$

 $E(X) = E(X_1 + X_2) = E(X_1) + E(X_2) = 3.5 + 3.5 = 7$

Example 2: Back to the expected value of $B_{n,p}$.

Let X be the total number of successes and let X_k be the outcome of the kth experiment, k = 1, ..., n:

$$E(X_k) = p \cdot 1 + (1-p) \cdot 0 = p$$

$$X = X_1 + \dots + X_n$$

Therefore

$$E(X) = E(X_1) + \dots + E(X_n) = np.$$

Expectation is Linear

Theorem: E(X + Y) = E(X) + E(Y)Proof: Recall that $E(X) = \sum_{s \in S} \Pr(s)X(s)$ Thus, $E(X + Y) = \sum_{s \in S} \Pr(s)(X + Y)(s)$ $= \sum_{s \in S} \Pr(s)X(s) + \sum_{s \in S} \Pr(s)Y(s)$ = E(X) + E(Y).Theorem: E(aX) = aE(X)Proof:

 $E(aX) = \sum_{s \in S} \Pr(s)(aX)(s) = a\sum_{s \in S} X(s) = aE(X).$

18

Expectation of Poisson Distribution

Let X be Poisson with parameter λ : $f_X(k) = e^{-\lambda \frac{\lambda^k}{k!}}$ for $k \in N$.

$$\begin{split} E(X) &= \Sigma_{k=0}^{\infty} k \cdot e^{-\lambda \frac{\lambda^k}{k!}} \\ &= \lambda \Sigma_{k=1}^{\infty} e^{-\lambda \frac{\lambda^{k-1}}{(k-1)!}} \\ &= \lambda \Sigma_{j=0}^{\infty} e^{-\lambda \frac{\lambda^j}{j!}} \\ &= \lambda \end{split}$$

Does this make sense?

 Recall that, for example, X models the number of incoming calls for a tech support center whose average rate per minute is λ.

Expectation of geometric distribution

Consider a sequence of Bernoulli trials. Let X denote the number of the first successful trial.

• E.g., the first time you see heads

X has a *geometric* distribution.

$$f_X(k) = (1-p)^{k-1}p \qquad k \in N^+.$$

- The probability of seeing heads for the first time on the kth toss is the probability of getting k 1 tails followed by heads
- This is also called a *negative binomial* distribution of order 1.
 - The negative binomial of order n gives the probability that it will take k trials to have n successes

What is the probability that X is finite?

$$\begin{split} \Sigma_{k=1}^{\infty} f_X(k) &= \Sigma_{k=1}^{\infty} (1-p)^{k-1} p \\ &= p \Sigma_{j=0}^{\infty} (1-p)^j \\ &= p \frac{1}{1-(1-p)} \\ &= 1 \end{split}$$

Can now compute E(X):

So, for example, if the success probability p is 1/3, it will take on average 3 trials to get a success.

• All this computation for a result that was intuitively clear all along ...

Conditional Expectation

21

 $E(X \mid A)$ is the conditional expectation of X given A. $E(X \mid A) = \sum_{x} x \Pr(X = x \mid A)$

$$= \sum_{x} x \operatorname{Pr}(X = x \cap A) / \operatorname{Pr}(A)$$

Theorem: For all events A such that $Pr(A), Pr(\overline{A}) > 0$: $E(X) = E(X \mid A) Pr(A) + E(X \mid \overline{A}) Pr(\overline{A})$

Proof:

E(X)

$$= \sum_{x} x \Pr(X = x)$$

= $\sum_{x} x(\Pr((X = x) \cap A) + \Pr((X = x) \cap \overline{A}))$

- $= \sum_{x} x(\Pr(X = x \mid A) \Pr(A) + \Pr(X = x \mid \overline{A}) \Pr(\overline{A}))$ $= \sum_{x} x(\Pr(X = x \mid A) \Pr(A) + \Pr(X = x \mid \overline{A}) \Pr(\overline{A}))$
- $= \sum_{x} (x \operatorname{Pr}(X = x \mid A) \operatorname{Pr}(A)) + (x \operatorname{Pr}(X = x \mid \overline{A}) \operatorname{Pr}(\overline{A}))$ $= \sum_{x} (x \operatorname{Pr}(X = x \mid A) \operatorname{Pr}(A)) + (x \operatorname{Pr}(X = x \mid \overline{A}) \operatorname{Pr}(\overline{A}))$

 $= E(X \mid A) \operatorname{Pr}(A) + E(X \mid \overline{A}) \operatorname{Pr}(\overline{A})$

Example: I toss a fair die. If it lands with 3 or more, I toss a coin with bias p_1 (towards heads). If it lands with less than 3, I toss a coin with bias p_2 . What is the expected number of heads?

Let A be the event that the die lands with 3 or more.

$$Pr(A) = 2/3$$

$$E(\#H) = E(\#H \mid A) Pr(A) + E(\#H \mid \overline{A}) Pr(\overline{A})$$

$$= p_1 \frac{2}{3} + p_2 \frac{1}{3}$$

Variance and Standard Deviation

22

Expectation summarizes a lot of information about a random variable as a single number. But no single number can tell it all.

Compare these two distributions:

• Distribution 1:

$$Pr(49) = Pr(51) = 1/4; Pr(50) = 1/2.$$

• Distribution 2: Pr(0) = Pr(50) = Pr(100) = 1/3.

Both have the same expectation: 50. But the first is much less "dispersed" than the second. We want a measure of *dispersion*.

• One measure of dispersion is how far things are from the mean, on average.

Given a random variable X, $(X(s) - E(X))^2$ measures how far the value of s is from the mean value (the expectation) of X. Define the *variance* of X to be

$$Var(X) = E((X - E(X))^2) = \sum_{s \in S} Pr(s)(X(s) - E(X))^2$$

The standard deviation of X is

$$\sigma_X = \sqrt{\operatorname{Var}(X)} = \sqrt{\sum_{s \in S} \Pr(s) (X(s) - E(X))^2}$$

Why not use |X(s) - E(X)| as the measure of distance instead of variance?

- $(X(s) E(X))^2$ turns out to have nicer mathematical properties.
- In \mathbb{R}^n , the distance between (x_1, \ldots, x_n) and (y_1, \ldots, y_n) is $\sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$

Example:

• The variance of distribution 1 is

$$\frac{1}{4}(51-50)^2 + \frac{1}{2}(50-50)^2 + \frac{1}{4}(49-50)^2 = \frac{1}{2}$$

• The variance of distribution 2 is

$$\frac{1}{3}(100-50)^2 + \frac{1}{3}(50-50)^2 + \frac{1}{3}(0-50)^2 = \frac{5000}{3}$$

Variance: Examples

Let X be Bernoulli, with probability p of success. Recall that E(X) = p.

$$Var(X) = (0 - p)^{2} \cdot (1 - p) + (1 - p)^{2} \cdot p$$

= $p(1 - p)[p + (1 - p)]$
= $p(1 - p)$

Theorem: $Var(X) = E(X^2) - E(X)^2$. **Proof:**

$$\begin{split} E(X-E(X))^2 &= E(X^2-2E(X)X+E(X)^2) \\ &= E(X^2)-2E(X)E(X)+E(E(X)^2) \\ &= E(X^2)-2E(X)^2+E(X)^2 \\ &= E(X^2)-E(X)^2 \end{split}$$

Example: Suppose X is the outcome of a roll of a fair die.

26

• Recall E(X) = 7/2.

•
$$E(X^2) = 1^2 \cdot \frac{1}{6} + 2^2 \cdot \frac{1}{6} + \dots + 6^2 \cdot \frac{1}{6} = \frac{91}{6}$$

• So Var(X) =
$$\frac{91}{6} - (\frac{7}{2})^2 = \frac{35}{12}$$
.

25

Var(X + Y)

Definition: The *covariance* of X and Y is

 $Cov(X, Y) = E(XY) - E(X) \cdot E(Y)$

- Cov(X, X) = Var(X)
- Cov(X, -X) = -Var(X)
- If X and Y are independent, Cov(X, Y) = 0[proved soon]
- covariance provides a measure of *correlation*:
 - $Cor(X, Y) = Cov(X, Y) / \sigma_X \sigma_Y$

 $\circ \operatorname{Cor}(X, X) = 1$ $\circ \operatorname{Cor}(\mathbf{X},-\mathbf{X}) = -1$

 \circ Cor(X, Y) = 0 if X and Y are independent

Claim:
$$Var(X + Y) = Var(X) + Var(Y) + 2 \cdot Cov(X, Y).$$

Proof: $E(X + Y) = E(X) + E(Y)$, so
 $Var(X + Y)$
 $= E[(X + Y)^2] - (E(X) + E(Y))^2$
 $= E(X^2 + 2XY + Y^2) - (E(X)^2 + 2E(X)E(Y) + E(Y)^2)$
 $= [E(X^2) - E(X)^2] + [E(Y^2) - E(Y)^2]$
 $+2[E(XY) - E(X)E(Y)]$
 $= Var(X) + Var(Y) + 2Cov(X, Y)$