Probability Distributions

If X is a random variable on sample space S, then the
probablity that X takes on the value c is

Pr(X =c¢)=Pr({se€ S| X(s) =c}
Similarly,
Pr(X <c¢)=Pr({se S| X(s) <c}.
This makes sense since the range of X is the real numbers.
Example: In the coin example,
Pr(#H =2)=4/9 and Pr(#H <1)=5/9

Given a probability measure Pr on a sample space .S and
a random variable X, the probability distribution asso-

ciated with X is fx(z) = Pr(X = x).
e fy is a probability measure on the real numbers.

The cumulative distribution associated with X is
Fx(x) =Pr(X < ux).



An Example With Dice

Suppose S is the sample space corresponding to tossing
a pair of fair dice: {(¢,7) | 1 <14,7 <6}

Let X be the random variable that gives the sum:
o X(i,j) =1+

fx(2) = Pr(X =2) = Pr({(1,1)}) = 1/36
fX(3> = Pr(X =3) = Pr({(1,2),(2,1)}) = 2/36

fﬂﬂdeXz?)_HGQ6%@5%HW®JH%:W%

F4(12) = Pr(X = 12) = Pr({(6.6)}) = 1/36

Can similarly compute the cumulative distribution:

Fx(2) = fx(2) =1/36
Fx(3) = fx(2) + [x(3) = 3/36

EFX(12) =1



The Finite Uniform Distribution

The finite uniform distribution is an equiprobable distri-
bution. If S = {x1,...,z,}, where 1 < x5 < ... < xy,
then:

flay) =1/n
F(xp) = k/n



The Binomial Distribution

Suppose there is an experiment with probability p of suc-
cess and thus probability ¢ = 1 — p of failure.

e For example, consider tossing a biased coin, where
Pr(h) = p. Getting “heads” is success, and getting
tails is failure.

Suppose the experiment is repeated independently n times.
e For example, the coin is tossed n times.

This is called a sequence of Bernoull: trials.

Key features:
e Only two possibilities: success or failure.

e Probability of success does not change from trial to
trial.

e The trials are independent.



What is the probability of £ successes in n trials?

Suppose n = 5 and k = 3. How many sequences of 5 coin
tosses have exactly three heads?

e hhhitt
e hhtht
e hhitth

C'(5, 3) such sequences!
What is the probability of each one?

p’(1—p)’
Therefore, probability is C(5, 3)p*(1 — p)?.

Let By, ,(k) be the probability of getting k successes in n
Bernoulli trials with probability p of success.

B, (k) = C(n, k)p*(1 —p)"*

Not surprisingly, B, , is called the Binomal Distribution.



The Poisson Distribution

A large call center receives, on average, A calls/minute.

e What is the probability that exactly k calls come dur-
ing a given minute’

Understanding this probability is critical for staffing!

e Similar issues arise if a printer receives, on average A
jobs/minute, a site gets A hits/minute, ...

This is modelled well by the Poisson distribution with
parameter A:

k) = 6/\2]:
o /1(0)=e?
o (1) =e*\
e /\(2) = e *\?/2

e~ is a normalization constant, since

L4+ A+ X/242/3 4. =€



Deriving the Poisson

Poisson distribution = limit of binomial distributions.

Suppose at most one call arrives in each second.

e Since A calls come each minute, expect about A/60
each second.

e The probability that k calls come is By /60(F)

This model doesn’t allow more than one call /second.
What'’s so special about 607 Suppose we divide one
minute into n time segments.

e Probability of getting a call in each segment is A/n.

e Probability of getting k calls in a minute is

Bn,)\/n<k>
= C(n, /f)()\/”)k( -t

= C(n, k>(””) (1=

— ?\j(nn!k) ( ) ( )n

Now let n — oc:

o lim, . (1 — i‘b)n — e

o limy, .o (nﬁ!k)! (ni)\>k =1

Conclusion: lim,,_s Bn,)\/n<k) = G_Mkl;
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New Distributions from Old

If X and Y are random variables on a sample space S,
sois X +Y, X +2Y, XY sin(X), etc.

For example,
o (X +Y)(s)=X(s)+Y(s).
o sin(X)(s) = sin(X(s))

Note sin(X) is a random variable: a function from the
sample space to the reals.



Some Examples

Example 1: A fair die is rolled. Let X denote the num-
ber that shows up. What is the probability distribution
of Y = X??
{s:Y(s) =k} ={s: X%s) =k}

= {5: X(s) = —vVkYU{s: X(s) = VEk}.
Conclusion: fy (k) = fx(Vk) + fx(=Vk).

So fy(1) = fy(4) = fy(9) =--- fy(36) = 1/6.
fy(k)=0if k ¢ {1,4,9,16,25,36}.

Example 2: A coin is flipped. Let X be 1 if the coin
shows H and -1 if T. Let Y = X>.

o [nthiscase Y =1,s0 Pr(Y =1) = 1.
Example 3: If two dice are rolled, let X be the number

that comes up on the first dice, and Y the number that
comes up on the second.

e Formally, X((i,4)) =1, Y((i,7)) = j.

The random variable X 4+Y is the total number showing.



Example 4: Suppose we toss a biased coin n times
(more generally, we perform n Bernoulli trials). Let Xj
describe the outcome of the kth coin toss: X = 1 if the
kth coin toss is heads, and 0 otherwise.

How do we formalize this?

e What’s the sample space?

Notice that X7 X}, describes the number of successes of
n Bernoulli trials.

e [f the probability of a single success is p, then X7 _; X}
has distribution B,, ,,

o The binomial distribution is the sum of Bernoullis
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Independent random variables

In a roll of two dice, let X and Y record the numbers on
the first and second die respectively.

e What can you say about the events X =3, Y = 27
e What about X =7 and Y = 37

Definition: The random variables X and Y are inde-
pendent if for every  and y the events X = xand Y =y
are independent.

Example: X and Y above are independent.

Definition: The random variables X, Xo,..., X, are
mutually independent if, for every x1,x9..., 1,

PrXi=x1,..., X, =x,) =Pr( Xy =21)...Pr(X,, = x,)

Example: X}, the success indicators in n Bernoulli tri-
als, are independent.
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Pairwise vs. mutual independence

Mutual independence implies pairwise independence; the
converse may not be true:

Example 1: A ball is randomly drawn from an urn
containing 4 balls: one blue, one red, one green and one
multicolored (red + blue + green)x

e Let X, X5 and X5 denote the indicators of the events
the ball has (some) blue, red and green respectively.

e Pr(X;=1)=1/2 fori=1,2,3

X1=0/X;=1

X3 and X5 independent: X5 =0 1/4 1/4
Xo=1 1/4 1/4

Similarly, X7 and X3 are independent; so are X5 and X3.

Are X7, Xy and X3 independent? No!

PriX;=1NnXy=1NnX3=1)=1/4
Pr(X;=1)Pr(Xo=1)Pr(X5=1) =1/8.
Example 2: Suppose X7 and X5 are bits (0 or 1) chosen
uniformly at random; X3 = X; & Xo.
e X1, Xy are independent, as are X7, X3 and X9, X3

e But X, Xy, and X3 are not mutually independent
o X7 and X5 together determine Xj!
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The distribution of X +Y

Suppose X and Y are independent random variables whose
range is included in {0,1,...,n}. Fork € {0,1,...,2n},

X+Y=k=U_(X=/))n(Y =k—j)).
Note that some of the events might be empty
e L.g.. X =k is bound to be empty if & > n.

This is a disjoint union so

Pr(X+Y =k)
= X Pr(X =jNY =k—j)
Yo Pr(X = j)Pr(Y =k —j) [by independence]
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Example: The Sum of Binomials

Suppose X has distribution B,, ,, Y has distribution B, ,,
and X and Y are independent.

Pr(X +Y =k)
= ¥ Pr(X = ] NY =k—j) [sum rule]
N Pr(X = Pr(Y k—7) independence]
( ) (1 )m—k+j
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Thus, X + Y has distribution B, 4, .

An easier argument: Perform n 4+ m Bernoulli trials. Let
X be the number of successes in the first n and let Y be
the number of successes in the last m. X has distribution
B, p, Y has distribution B, ,, X and Y are independent,
and X +Y is the number of successes in all n + m trials,
and so has distribution B, 4y, .
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Expected Value

Suppose we toss a biased coin, with Pr(h) = 2/3. If the
coin lands heads, you get $1; if the coin lands tails, you
get $3. What are your expected winnings?

e 2/3 of the time you get $1;
1/3 of the time you get $3

e (2/3x 1)+ (1/3 x3)=5/3

What’s a good way to think about this? We have a ran-
dom variable W (for winnings):

e W(h)=1
o WW(t)=3
The expectation of W is

EW) = Pr(h)W(h)+ Pr(t)W(t)
=Pr(W =1)x1+Pr(W=3)x3

More generally, the expected value of random variable X
on sample space S is

E(X)=Y2Pr(X =x)

An equivalent definition:

E(X) = YsesX(s)Pr(s)
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Example: What is the expected count when two dice
are rolled?

Let X be the count:
E(X)
— 22222' Pr(X =1)

1 2 3 6 1
§§,26+3%+4%+--'+7%+---+12%
36
=7
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Expectation of Binomials

What is F(B,,,), the expectation for the binomial distri-
bution B,

e How many heads do you expect to get after n tosses
of a biased coin with Pr(h) = p?

Method 1: Use the definition and crank it out:

E(Byp) = Zok(Z)pk (1—p)"

This looks awtul, but it can be calculated ...

Method 2: Use Induction; break it up into what hap-
pens on the first toss and on the later tosses.

e On the first toss you get heads with probability p
and tails with probability 1 — p. On the last n — 1
tosses, you expect E(B,_1,) heads. Thus, the ex-
pected number of heads is:

E(Bp) =p(1+ E(By-1p)) + (1 — p)(E(By-1,))
=D+ E<Bn—1,p)
E<Bl,p> =P

Now an easy induction shows that E(B,,,) = np.

There’s an even easier way . . .
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Expectation is Linear

Theorem: F(X +Y)=FEX)+ E(Y)

Proof: Recall that
E(X) = Yses Pr(s) X (s)

Thus,

E(X+Y) =Yg Pr(s)(X +Y)(s)

= Yses Pr(s) X (s) + Xses Pr(s)Y (s)
= E(X)+ E(Y).

Theorem: F(aX)=aF(X)

Proof:

E(aX) = YsesPr(s)(aX)(s) = adises X(s) = aF(X).
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Example 1: Back to the expected value of tossing two
dice:

Let X, be the count on the first die, X5 the count on the
second die, and let X be the total count.

Notice that
EX)=FEX)=(14+2+34+4+54+6)/6=3.5

E(X)=E(Xi+X,) = E(X))+E(X5) =354+35=71

Example 2: Back to the expected value of B, .

Let X be the total number of successes and let X, be the
outcome of the kth experiment, k =1,...,n:

EXy)=p-1+(1-p)-0=p

X=X{+---+X,
Therefore

BE(X)=EXy)+ -+ E(X,) =np.
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Expectation of Poisson Distribution

Let X be Poisson with parameter \: fx(k) = e Mk for
ke N.

B(X) =50 k- e

k!
) kel
ey
OO Y
= AX2 e M
— A

Does this make sense?

e Recall that, for example, X models the number of
incoming calls for a tech support center whose average
rate per minute is A\.
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Expectation of geometric distribution

Consider a sequence of Bernoulli trials. Let X denote the
number of the first successful trial.

e [l.g. the first time you see heads
X has a geometric distribution.
fx(k)=(1—=p)'p keN"

e The probability of seeing heads for the first time on
the kth toss is the probability of getting £ — 1 tails
followed by heads

e This is also called a negative binomial distribution
of order 1.

o The negative binomial of order n gives the proba-
bility that it will take £ trials to have n successes
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What is the probability that X is finite?
i fx(k) =22, (1 - p)kflp
= pz}?%o(l —p)

— P11
=1

Can now compute £(X):

E(X) = 52k-(1-p)" 'p
= pl 2 (1 =p) T S, - p) T
2a(l=p)
=pl(l/p)+ (L =p)/p+(1—p)*/p+-]
=1+(1-p+1-p°+--
= 1/p
So, for example, if the success probability p is 1/3, it will
take on average 3 trials to get a success.

e All this computation for a result that was intuitively
clear all along ...
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Conditional Expectation

E(X | A) is the conditional expectation of X given A.
EX|A) =X2Pr(X =x| A
=Y, xPr(X =xnNA)/Pr(A)
Theorem: For all events A such that Pr(A), Pr(A) > 0:
EX)=EX|APr(A)+EX|A) Pr(A)

Proof:
E(X)
— ¥, Pr(X = )
= Y x(Pr(X =2)NA) +Pr((X =2)Nn A))
= Y x(Pr(X =2 | A)Pr(A)+ Pr(X =x | A)Pr(A)
= Y(x Pr(X =2 | A)Pr(A)) + (x Pr(X =z | A) Pr(A))

— E(X | A)Pr(A) + E(X | A)Pr(A)

Example: I toss a fair die. If it lands with 3 or more,
[ toss a coin with bias p; (towards heads). If it lands
with less than 3, I toss a coin with bias p;. What is the
expected number of heads?

Let A be the event that the die lands with 3 or more.
Pr(A) =2/3
E(#H) =E(#H | A)Pr(A)+ E(#H | A) Pr(A)
2 1
= P15 + D23
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Variance and Standard Deviation

Expectation summarizes a lot of information about a ran-
dom variable as a single number. But no single number
can tell it all.

Compare these two distributions:

e Distribution 1:
Pr(49) = Pr(51) = 1/4; Pr(50) = 1/2.

e Distribution 2: Pr(0) = Pr(50) = Pr(100) = 1/3.

Both have the same expectation: 50. But the first is much
less “dispersed” than the second. We want a measure of
dispersion.

e One measure of dispersion is how far things are from
the mean, on average.

Given a random variable X, (X (s) — E(X))? measures
how far the value of s is from the mean value (the expec-
tation) of X. Define the variance of X to be

Var(X) = E((X — E(X))?) = Sees Pr(s)(X(s) — B(X))?

The standard deviation of X is
ox = Var(X) = {Sses Pr(s)(X(s) — B(X))?
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Why not use | X (s) — E(X)| as the measure of distance
instead of variance?

e (X(s5)—FE(X))? turns out to have nicer mathematical
properties.

e In R" the distance between (xy, ..., x,)and (y1,...,Yn)
1S \/<5131 — y1)2 + e T (xn — yn>2

Example:

e 'The variance of distribution 1 is

1 1 1 1
(51 — 5002+ (50 — 50)2 4 2(49 — 50)2 = =
4(5 50)° + 2(50 50)° + 4( 9 — 50) )

e The variance of distribution 2 is

1 1 1
(100 — 50)2 4+ —(50 — 50)% + —(0 — 50)* = ——
3( >+3( )+3< ) ;

25



Variance: Examples

Let X be Bernoulli, with probability p of success. Recall
that E(X) = p.

Var(X) = (0 —p)>-(1—p)+ (1 —p)*-p
p(1 —p)lp+ (1 —p)]
p

(1-p)
B(X2) — E(X)2.

Theorem: Var(X)

Proof:

E(X - E(X))* = E(X? - 2E(X)X + E(X)?)
:E(XQ)—2E(X)E(X)+E(E(X)2)
:E(XQ)—ZE(X) +E(X)2
= B(X?) - BE(X)?

Example: Suppose X is the outcome of a roll of a fair

die.
e Recall E(X) =7/2.
e B(X?) =12 +2%- L +...+ 6

o So Var(X) =% — (1)? = 2,
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Var(X +Y)

Definition: The covariance of X and Y is
Cov(X,Y) = E(XY) — E(X) - E(Y)
e Cov(X, X) = Var(X)
o Cov(X, —X) = —Var(X)
o [f X and Y are independent, Cov(X,Y) =10

[proved soon]

e covariance provides a measure of correlation:
Cor(X,Y) = Cov(X,Y)/oxoy
o Cor(X,X) =1
o Cor(X, =X) = —1
o Cor(X,Y)=0if X and Y are independent

Claim: Var(X+Y) = Var(X) 4+ Var(Y) +2- Cov(X,Y).
Proof: E(X +Y)=FE(X)+ E(Y), so
Var(X+Y)

= E[(X +Y)"] — (B(X) + B(Y))’
E(X?+2XY +Y? — (E(X)?+2E(X)E(Y) + E(Y)?)
[E(X?) = E(X)7] + [E(Y?) - E(Y)’]

+2[E(XY) — E(X)E(Y)]
= Var(X) + Var(Y) + 2Cov(X,Y)
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