Probability Distributions

If X is a random variable on sample space S, then the probability that X takes on the value c is

$$\Pr(X = c) = \Pr(\{s \in S \mid X(s) = c\})$$

Similarly,

$$\Pr(X \le c) = \Pr(\{s \in S \mid X(s) \le c\}.$$

This makes sense since the range of X is the real numbers.

Example: In the coin example,

$$\Pr(\#H = 2) = 4/9 \text{ and } \Pr(\#H \le 1) = 5/9$$

Given a probability measure Pr on a sample space S and a random variable X, the *probability distribution* associated with X is $f_X(x) = \Pr(X = x)$.

• f_X is a probability measure on the real numbers.

The cumulative distribution associated with X is $F_X(x) = \Pr(X \leq x)$.

An Example With Dice

Suppose S is the sample space corresponding to tossing a pair of fair dice: $\{(i,j) \mid 1 \leq i, j \leq 6\}$.

Let X be the random variable that gives the sum:

Can similarly compute the cumulative distribution:

$$F_X(2) = f_X(2) = 1/36$$

 $F_X(3) = f_X(2) + f_X(3) = 3/36$
:
 $F_X(12) = 1$

The Finite Uniform Distribution

The finite uniform distribution is an equiprobable distribution. If $S = \{x_1, \ldots, x_n\}$, where $x_1 < x_2 < \ldots < x_n$, then:

$$f(x_k) = 1/n$$

$$F(x_k) = k/n$$

The Binomial Distribution

Suppose there is an experiment with probability p of success and thus probability q = 1 - p of failure.

• For example, consider tossing a biased coin, where Pr(h) = p. Getting "heads" is success, and getting tails is failure.

Suppose the experiment is repeated independently n times.

 \bullet For example, the coin is tossed n times.

This is called a sequence of *Bernoulli trials*.

Key features:

- Only two possibilities: success or failure.
- Probability of success does not change from trial to trial.
- The trials are independent.

What is the probability of k successes in n trials?

Suppose n = 5 and k = 3. How many sequences of 5 coin tosses have exactly three heads?

- hhhtt
- hhtht
- \bullet hhtth

:

C(5,3) such sequences!

What is the probability of each one?

$$p^3(1-p)^2$$

Therefore, probability is $C(5,3)p^3(1-p)^2$.

Let $B_{n,p}(k)$ be the probability of getting k successes in n Bernoulli trials with probability p of success.

$$B_{n,p}(k) = C(n,k)p^k(1-p)^{n-k}$$

Not surprisingly, $B_{n,p}$ is called the *Binomal Distribution*.

The Poisson Distribution

A large call center receives, on average, λ calls/minute.

• What is the probability that exactly k calls come during a given minute?

Understanding this probability is critical for staffing!

• Similar issues arise if a printer receives, on average λ jobs/minute, a site gets λ hits/minute, . . .

This is modelled well by the *Poisson distribution* with parameter λ :

$$f_{\lambda}(k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

- $f_{\lambda}(0) = e^{-\lambda}$
- $f_{\lambda}(1) = e^{-\lambda}\lambda$
- $f_{\lambda}(2) = e^{-\lambda} \lambda^2 / 2$

 $e^{-\lambda}$ is a normalization constant, since

$$1 + \lambda + \lambda^2/2 + \lambda^3/3! + \dots = e^{\lambda}$$

Deriving the Poisson

Poisson distribution = limit of binomial distributions.

Suppose at most one call arrives in each second.

- Since λ calls come each minute, expect about $\lambda/60$ each second.
- The probability that k calls come is $B_{60,\lambda/60}(k)$

This model doesn't allow more than one call/second. What's so special about 60? Suppose we divide one minute into n time segments.

- Probability of getting a call in each segment is λ/n .
- \bullet Probability of getting k calls in a minute is

$$B_{n,\lambda/n}(k)$$

$$= C(n,k)(\lambda/n)^k (1 - \frac{\lambda}{n})^{n-k}$$

$$= C(n,k) \left(\frac{\lambda/n}{1-\frac{\lambda}{n}}\right)^k \left(1 - \frac{\lambda}{n}\right)^n$$

$$= \frac{\lambda^k}{k!} \frac{n!}{(n-k)!} \left(\frac{1}{n-\lambda}\right)^k \left(1 - \frac{\lambda}{n}\right)^n$$

Now let $n \to \infty$:

•
$$\lim_{n\to\infty} \left(1-\frac{\lambda}{n}\right)^n = e^{-\lambda}$$

•
$$\lim_{n\to\infty} \frac{n!}{(n-k)!} \left(\frac{1}{n-\lambda}\right)^k = 1$$

Conclusion: $\lim_{n\to\infty} B_{n,\lambda/n}(k) = e^{-\lambda} \frac{\lambda^k}{k!}$

New Distributions from Old

If X and Y are random variables on a sample space S, so is X + Y, X + 2Y, XY, $\sin(X)$, etc.

For example,

- $\bullet (X+Y)(s) = X(s) + Y(s).$
- $\bullet \sin(X)(s) = \sin(X(s))$

Note sin(X) is a random variable: a function from the sample space to the reals.

Some Examples

Example 1: A fair die is rolled. Let X denote the number that shows up. What is the probability distribution of $Y = X^2$?

Conclusion:
$$f_Y(k) = f_X(\sqrt{k}) + f_X(-\sqrt{k})$$
.
So $f_Y(1) = f_Y(4) = f_Y(9) = \cdots f_Y(36) = 1/6$.
 $f_Y(k) = 0$ if $k \notin \{1, 4, 9, 16, 25, 36\}$.

Example 2: A coin is flipped. Let X be 1 if the coin shows H and -1 if T. Let $Y = X^2$.

• In this case $Y \equiv 1$, so Pr(Y = 1) = 1.

Example 3: If two dice are rolled, let X be the number that comes up on the first dice, and Y the number that comes up on the second.

• Formally, X((i,j)) = i, Y((i,j)) = j.

The random variable X + Y is the total number showing.

Example 4: Suppose we toss a biased coin n times (more generally, we perform n Bernoulli trials). Let X_k describe the outcome of the kth coin toss: $X_k = 1$ if the kth coin toss is heads, and 0 otherwise.

How do we formalize this?

• What's the sample space?

Notice that $\sum_{k=1}^{n} X_k$ describes the number of successes of n Bernoulli trials.

- If the probability of a single success is p, then $\sum_{k=1}^{n} X_k$ has distribution $B_{n,p}$
 - The binomial distribution is the sum of Bernoullis

Independent random variables

In a roll of two dice, let X and Y record the numbers on the first and second die respectively.

- What can you say about the events X = 3, Y = 2?
- What about X = i and Y = j?

Definition: The random variables X and Y are independent if for every x and y the events X = x and Y = y are independent.

Example: X and Y above are independent.

Definition: The random variables X_1, X_2, \ldots, X_n are mutually independent if, for every x_1, x_2, \ldots, x_n

$$\Pr(X_1 = x_1, \dots, X_n = x_n) = \Pr(X_1 = x_1) \dots \Pr(X_n = x_n)$$

Example: X_k , the success indicators in n Bernoulli trials, are independent.

Pairwise vs. mutual independence

Mutual independence implies pairwise independence; the converse may not be true:

Example 1: A ball is randomly drawn from an urn containing 4 balls: one blue, one red, one green and one multicolored (red + blue + green)x

- Let X_1 , X_2 and X_3 denote the indicators of the events the ball has (some) blue, red and green respectively.
- $Pr(X_i = 1) = 1/2$, for i = 1, 2, 3

$$X_1$$
 and X_2 independent: $X_2 = 0$ $X_1 = 0$ $X_1 = 1$ $X_2 = 0$ $X_1 = 1$ $X_2 =$

Similarly, X_1 and X_3 are independent; so are X_2 and X_3 .

Are X_1 , X_2 and X_3 independent? No!

$$\Pr(X_1 = 1 \cap X_2 = 1 \cap X_3 = 1) = 1/4$$

 $\Pr(X_1 = 1) \Pr(X_2 = 1) \Pr(X_3 = 1) = 1/8.$

Example 2: Suppose X_1 and X_2 are bits (0 or 1) chosen uniformly at random; $X_3 = X_1 \oplus X_2$.

- X_1, X_2 are independent, as are X_1, X_3 and X_2, X_3
- But X_1 , X_2 , and X_3 are not mutually independent $\circ X_1$ and X_2 together determine X_3 !

The distribution of X + Y

Suppose X and Y are independent random variables whose range is included in $\{0, 1, ..., n\}$. For $k \in \{0, 1, ..., 2n\}$,

$$X + Y = k = \bigcup_{j=0}^{k} ((X = j) \cap (Y = k - j)).$$

Note that some of the events might be empty

• E.g., X = k is bound to be empty if k > n.

This is a disjoint union so

$$\begin{aligned} &\Pr(X+Y=k)\\ &= \Sigma_{j=0}^k \Pr(X=j\cap Y=k-j)\\ &= \Sigma_{j=0}^k \Pr(X=j) \Pr(Y=k-j) \quad \text{[by independence]} \end{aligned}$$

Example: The Sum of Binomials

Suppose X has distribution $B_{n,p}$, Y has distribution $B_{m,p}$, and X and Y are independent.

$$\Pr(X + Y = k)$$
= $\sum_{j=0}^{k} \Pr(X = j \cap Y = k - j)$ [sum rule]
= $\sum_{j=0}^{k} \Pr(X = j) \Pr(Y = k - j)$ [independence]
= $\sum_{j=0}^{k} \binom{n}{j} p^{j} (1 - p)^{n-j} \binom{m}{k-j} p^{k-j} (1 - p)^{m-k+j}$
= $\sum_{j=0}^{k} \binom{n}{j} \binom{m}{k-j} p^{k} (1 - p)^{n+m-k}$
= $(\sum_{j=0}^{k} \binom{n}{j} \binom{m}{k-j}) p^{k} (1 - p)^{n+m-k}$
= $\binom{n+m}{k} p^{k} (1 - p)^{n+m-k}$

Thus, X + Y has distribution $B_{n+m,p}$.

An easier argument: Perform n + m Bernoulli trials. Let X be the number of successes in the first n and let Y be the number of successes in the last m. X has distribution $B_{n,p}$, Y has distribution $B_{m,p}$, X and Y are independent, and X + Y is the number of successes in all n + m trials, and so has distribution $B_{n+m,p}$.

Expected Value

Suppose we toss a biased coin, with Pr(h) = 2/3. If the coin lands heads, you get \$1; if the coin lands tails, you get \$3. What are your expected winnings?

- 2/3 of the time you get \$1; 1/3 of the time you get \$3
- $\bullet (2/3 \times 1) + (1/3 \times 3) = 5/3$

What's a good way to think about this? We have a random variable W (for winnings):

- $\bullet W(h) = 1$
- $\bullet \ W(t) = 3$

The expectation of W is

$$E(W) = \Pr(h)W(h) + \Pr(t)W(t)$$

= $\Pr(W = 1) \times 1 + \Pr(W = 3) \times 3$

More generally, the $expected\ value$ of random variable X on sample space S is

$$E(X) = \Sigma_x x \Pr(X = x)$$

An equivalent definition:

$$E(X) = \sum_{s \in S} X(s) \Pr(s)$$

Example: What is the expected count when two dice are rolled?

Let X be the count:

$$E(X)$$
= $\Sigma_{i=2}^{12} i \Pr(X = i)$
= $2\frac{1}{36} + 3\frac{2}{36} + 4\frac{3}{36} + \dots + 7\frac{6}{36} + \dots + 12\frac{1}{36}$
= $\frac{252}{36}$
= 7

Expectation of Binomials

What is $E(B_{n,p})$, the expectation for the binomial distribution $B_{n,p}$

• How many heads do you expect to get after n tosses of a biased coin with Pr(h) = p?

Method 1: Use the definition and crank it out:

$$E(B_{n,p}) = \sum_{k=0}^{n} k \binom{n}{k} p^k (1-p)^{n-k}$$

This looks awful, but it can be calculated ...

Method 2: Use Induction; break it up into what happens on the first toss and on the later tosses.

• On the first toss you get heads with probability p and tails with probability 1 - p. On the last n - 1 tosses, you expect $E(B_{n-1,p})$ heads. Thus, the expected number of heads is:

$$E(B_{n,p}) = p(1 + E(B_{n-1,p})) + (1 - p)(E(B_{n-1,p}))$$

= $p + E(B_{n-1,p})$
 $E(B_{1,p}) = p$

Now an easy induction shows that $E(B_{n,p}) = np$.

There's an even easier way ...

Expectation is Linear

Theorem: E(X + Y) = E(X) + E(Y)

Proof: Recall that

$$E(X) = \sum_{s \in S} \Pr(s) X(s)$$

Thus,

$$E(X + Y) = \sum_{s \in S} \Pr(s)(X + Y)(s)$$

= $\sum_{s \in S} \Pr(s)X(s) + \sum_{s \in S} \Pr(s)Y(s)$
= $E(X) + E(Y)$.

Theorem: E(aX) = aE(X)

Proof:

$$E(aX) = \sum_{s \in S} \Pr(s)(aX)(s) = a\sum_{s \in S} X(s) = aE(X).$$

Example 1: Back to the expected value of tossing two dice:

Let X_1 be the count on the first die, X_2 the count on the second die, and let X be the total count.

Notice that

$$E(X_1) = E(X_2) = (1+2+3+4+5+6)/6 = 3.5$$

$$E(X) = E(X_1 + X_2) = E(X_1) + E(X_2) = 3.5 + 3.5 = 7$$

Example 2: Back to the expected value of $B_{n,p}$.

Let X be the total number of successes and let X_k be the outcome of the kth experiment, k = 1, ..., n:

$$E(X_k) = p \cdot 1 + (1 - p) \cdot 0 = p$$

$$X = X_1 + \dots + X_n$$

Therefore

$$E(X) = E(X_1) + \dots + E(X_n) = np.$$

Expectation of Poisson Distribution

Let X be Poisson with parameter λ : $f_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}$ for $k \in N$.

$$E(X) = \sum_{k=0}^{\infty} k \cdot e^{-\lambda} \frac{\lambda^k}{k!}$$

$$= \lambda \sum_{k=1}^{\infty} e^{-\lambda} \frac{\lambda^{k-1}}{(k-1)!}$$

$$= \lambda \sum_{j=0}^{\infty} e^{-\lambda} \frac{\lambda^j}{j!}$$

$$= \lambda$$

Does this make sense?

• Recall that, for example, X models the number of incoming calls for a tech support center whose average rate per minute is λ .

Expectation of geometric distribution

Consider a sequence of Bernoulli trials. Let X denote the number of the first successful trial.

• E.g., the first time you see heads

X has a geometric distribution.

$$f_X(k) = (1-p)^{k-1}p$$
 $k \in N^+$.

- The probability of seeing heads for the first time on the kth toss is the probability of getting k-1 tails followed by heads
- This is also called a *negative binomial* distribution of order 1.
 - \circ The negative binomial of order n gives the probability that it will take k trials to have n successes

What is the probability that X is finite?

$$\Sigma_{k=1}^{\infty} f_X(k) = \Sigma_{k=1}^{\infty} (1-p)^{k-1} p$$

$$= p \Sigma_{j=0}^{\infty} (1-p)^j$$

$$= p \frac{1}{1-(1-p)}$$

$$= 1$$

Can now compute E(X):

$$E(X) = \sum_{k=1}^{\infty} k \cdot (1-p)^{k-1} p$$

$$= p \left[\sum_{k=1}^{\infty} (1-p)^{k-1} + \sum_{k=2}^{\infty} (1-p)^{k-1} + \sum_{k=3}^{\infty} (1-p)^{k-1} + \cdots \right]$$

$$= p [(1/p) + (1-p)/p + (1-p)^2/p + \cdots]$$

$$= 1 + (1-p) + (1-p)^2 + \cdots$$

$$= 1/p$$

So, for example, if the success probability p is 1/3, it will take on average 3 trials to get a success.

• All this computation for a result that was intuitively clear all along . . .

Conditional Expectation

 $E(X \mid A)$ is the conditional expectation of X given A.

$$E(X \mid A) = \sum_{x} x \Pr(X = x \mid A)$$

= $\sum_{x} x \Pr(X = x \cap A) / \Pr(A)$

Theorem: For all events A such that $Pr(A), Pr(\overline{A}) > 0$:

$$E(X) = E(X \mid A) \Pr(A) + E(X \mid \overline{A}) \Pr(\overline{A})$$

Proof:

$$E(X)$$

$$= \Sigma_{x} x \Pr(X = x)$$

$$= \Sigma_{x} x (\Pr(X = x) \cap A) + \Pr(X = x) \cap \overline{A})$$

$$= \Sigma_{x} x (\Pr(X = x \mid A) \Pr(A) + \Pr(X = x \mid \overline{A}) \Pr(\overline{A}))$$

$$= \Sigma_{x} x (\Pr(X = x \mid A) \Pr(A)) + (x \Pr(X = x \mid \overline{A}) \Pr(\overline{A}))$$

$$= E(X \mid A) \Pr(A) + E(X \mid \overline{A}) \Pr(\overline{A})$$

Example: I toss a fair die. If it lands with 3 or more, I toss a coin with bias p_1 (towards heads). If it lands with less than 3, I toss a coin with bias p_2 . What is the expected number of heads?

Let A be the event that the die lands with 3 or more.

$$Pr(A) = 2/3$$

$$E(\#H) = E(\#H \mid A) Pr(A) + E(\#H \mid \overline{A}) Pr(\overline{A})$$

$$= p_1 \frac{2}{3} + p_2 \frac{1}{3}$$

Variance and Standard Deviation

Expectation summarizes a lot of information about a random variable as a single number. But no single number can tell it all.

Compare these two distributions:

• Distribution 1:

$$Pr(49) = Pr(51) = 1/4; Pr(50) = 1/2.$$

• Distribution 2: Pr(0) = Pr(50) = Pr(100) = 1/3.

Both have the same expectation: 50. But the first is much less "dispersed" than the second. We want a measure of dispersion.

• One measure of dispersion is how far things are from the mean, on average.

Given a random variable X, $(X(s) - E(X))^2$ measures how far the value of s is from the mean value (the expectation) of X. Define the *variance* of X to be

$$Var(X) = E((X - E(X))^2) = \sum_{s \in S} Pr(s)(X(s) - E(X))^2$$

The standard deviation of X is

$$\sigma_X = \sqrt{\operatorname{Var}(X)} = \sqrt{\sum_{s \in S} \operatorname{Pr}(s)(X(s) - E(X))^2}$$

Why not use |X(s) - E(X)| as the measure of distance instead of variance?

- $(X(s)-E(X))^2$ turns out to have nicer mathematical properties.
- In R^n , the distance between (x_1, \ldots, x_n) and (y_1, \ldots, y_n) is $\sqrt{(x_1 y_1)^2 + \cdots + (x_n y_n)^2}$

Example:

• The variance of distribution 1 is

$$\frac{1}{4}(51 - 50)^2 + \frac{1}{2}(50 - 50)^2 + \frac{1}{4}(49 - 50)^2 = \frac{1}{2}$$

• The variance of distribution 2 is

$$\frac{1}{3}(100 - 50)^2 + \frac{1}{3}(50 - 50)^2 + \frac{1}{3}(0 - 50)^2 = \frac{5000}{3}$$

Variance: Examples

Let X be Bernoulli, with probability p of success. Recall that E(X) = p.

$$Var(X) = (0 - p)^{2} \cdot (1 - p) + (1 - p)^{2} \cdot p$$
$$= p(1 - p)[p + (1 - p)]$$
$$= p(1 - p)$$

Theorem: $Var(X) = E(X^2) - E(X)^2$.

Proof:

$$E(X - E(X))^{2} = E(X^{2} - 2E(X)X + E(X)^{2})$$

$$= E(X^{2}) - 2E(X)E(X) + E(E(X)^{2})$$

$$= E(X^{2}) - 2E(X)^{2} + E(X)^{2}$$

$$= E(X^{2}) - E(X)^{2}$$

Example: Suppose X is the outcome of a roll of a fair die.

• Recall E(X) = 7/2.

•
$$E(X^2) = 1^2 \cdot \frac{1}{6} + 2^2 \cdot \frac{1}{6} + \dots + 6^2 \cdot \frac{1}{6} = \frac{91}{6}$$

• So
$$Var(X) = \frac{91}{6} - (\frac{7}{2})^2 = \frac{35}{12}$$
.

$$Var(X + Y)$$

Definition: The *covariance* of X and Y is

$$Cov(X, Y) = E(XY) - E(X) \cdot E(Y)$$

- $\bullet \operatorname{Cov}(X, X) = \operatorname{Var}(X)$
- Cov(X, -X) = -Var(X)
- If X and Y are independent, Cov(X, Y) = 0 [proved soon]
- covariance provides a measure of *correlation*:

$$Cor(X, Y) = Cov(X, Y) / \sigma_X \sigma_Y$$

- $\circ \operatorname{Cor}(X, X) = 1$
- $\circ \operatorname{Cor}(X, -X) = -1$
- $\circ \operatorname{Cor}(X, Y) = 0$ if X and Y are independent

Claim: $Var(X + Y) = Var(X) + Var(Y) + 2 \cdot Cov(X, Y)$.

Proof:
$$E(X + Y) = E(X) + E(Y)$$
, so

$$Var(X + Y)$$

$$= E[(X + Y)^{2}] - (E(X) + E(Y))^{2}$$

$$= E(X^{2} + 2XY + Y^{2}) - (E(X)^{2} + 2E(X)E(Y) + E(Y)^{2})$$

$$= [E(X^{2}) - E(X)^{2}] + [E(Y^{2}) - E(Y)^{2}]$$

$$+2[E(XY)-E(X)E(Y)]$$

$$= Var(X) + Var(Y) + 2Cov(X, Y)$$