
CS 280 - Homework 5
Solutions

Problem 1. (10)

a. Evaluate 71001 mod 11.

71001 mod 11 =
(
710

)100 mod 11

= 1100 mod 11
= 1 mod 11
= 1

b. Calculate ϕ(120) and ϕ(384). Use the formula

ϕ(n) = n ·
∏
p

(
1− 1

p

)
where p ranges over unique primes that divide n.

ϕ(120) = ϕ(23 · 31 · 51)

= ϕ(8) · ϕ(3) · ϕ(5)
= 4 · 2 · 4
= 32

ϕ(384) = ϕ(27 · 31)

= 384 ·
(

1− 1
2

)
·
(

1− 1
3

)
=

384
3

= 128

c. Show that (n13−n) is divisible by 2, 3, 5, 7, and 13, ∀ n ∈ Z. A lot of people went through a lot
of unnecessary modular computation to find the solution to this problem. A simple application of
Fermat’s rule makes the problem much simpler. Fermat’s little theorem (FLT) states: ap−1 = 1
(mod p) when a 6 | p.

We have to prove that n13 − n is divisible by 2, 3, 5, 7, 13.
For 2: (n13−n) = n · (n12− 1) Notice that if n is not divisible by 2, then n2−1 = 1 (mod 2) by

FLT and therefore since n congruent to 1 (mod 2), and n is relatively prime to 2, n12 is congruent
to 1 mod 2 and n12 − 1 is congruent to 0 (mod 2). Hence the term is divisible by 2.

For 3: We see that n2 is congruent to 1 (mod 3) by FLT. Therefore
(
n2

)6 is also congruent to
1 (mod 3), and therefore n12 − 1 is a multiple of 3.

For 5, 7 and 13, notice that n4, n6 and n12 are all congruent to 1 modulo 5, 7 and 13 respectively.
Therefore

(
n4

)3,
(
n6

)2 and
(
n12

)1 (which are all equal to n12) are congruent to 1 mod 5, 7 and
13 respectively. Therefore n12 − 1 is divisible by all of 5, 7, and 13. Hence proved.

d. Show that if n ≥ 2 and p is a prime s.t. p|n but p2 6 |n, then pϕ(n)+1 ≡ p mod n. Let k = n
p for

the purposes of this problem. Notice that k is necessarily coprime with respect to p, because if k
was a multiple of p, then this contradicts the claim that p2 does not divide n (since this implies
that another multiple of p is built into k). Therefore if we assume truth of the statement, then:

pϕ(n)+1 ≡ p mod n

pϕ(n) · p ≡ p mod n

pϕ(n) ≡ 1 mod k [we divided both sides by p]

Notice that n = k · p, so pϕ(n) = pϕ(k·p). Therefore pϕ(k∗p) ≡ 1 mod k. Thus
(
pϕ(k)

)p ≡ 1 mod k,
or

(
pk−1

)p ≡ 1 mod k. Since pk−1 ≡ 1 mod k, it stands to reason that
(
pk−1

)p ≡ 1 mod k. Hence
our initial assumption that the terms were equal holds.

e. Explain carefully what happens if in the RSA cryptosystem we were to allow larger block sizes
(relative to the two primes used) so that some of the blocks could fail to be relatively prime to
n = pq. If the block size is big enough to encode n, then encoding n and 0 result in the same
number, namely 0. There are many different examples that would meet this criterion.

Problem 2. (6)

a. We are given p = 17, q = 43, e = 29, n = pq = 731, and E = 290 369 203 405 033 511 584
612 213.

ϕ(n) = ϕ(731) = ϕ(17) · ϕ(43) = 16 · 42 = 672

We know that 29 · d = 1 mod 672, so using the fact that [29]−1 = −139, we find d = −139 mod
672 = 533. We now find the first M , using the formula M = Ed (mod n):

M1 = 290533 (mod 731)

= 29013·41 (mod 731)

= 2913·411013·41 (mod 731)

= 4054164041 (mod 731)

= 700 · 533 (mod 731)

= 290 (mod 731)

Since 290 mod 26 = 4 ⇒ E and (290 − 4)/26 = 11 ⇒ L, we see that the first two letters of the
plaintext are LE.

The rest of the blocks are decrypted in the same manner, yielding the plaintext
LE TT HE BU YE RB EW AR EX.

b. We are given p = 113, q = 157, e = 12707, and n = 113 · 157 = 17741. THISISMAD is encoded
by breaking it into 3-letter chunks:

THI→ 19 · 262 + 7 · 261 + 8 · 260 = 13034

SIS→ 18 · 262 + 8 · 261 + 18 · 260 = 12394

MAD→ 12 · 262 + 0 · 261 + 3 · 260 = 8115

So the ciphertext is:

1303412707 (mod 17741) =
(
297

)131 ·
(
797

)131 ·
(
797

)131 ·
(
797

)131 ·
(
1997

)131 (mod 17741)

= 1635 · 155453 · 10078 (mod 17741)
= 4453

The rest of the blocks are encrypted in the same manner, yielding the ciphertext
04453 14649 09416.

c. This problem is solved in the same way as (a), yielding DON TWO RRY BEH APP YXX.

Problem 3. (6)

a. Since m = pq and n = (p− 1)(q − 1):

m− n + 1 = pq − (p− 1)(q − 1) + 1

= pq − (pq − p− q + 1) + 1
= p + q

b. Since q = m
p and p + q = m− n + 1, we can substitute m

p for q, giving:

p +
m

p
= m− n + 1

p2 + m = mp− np + p

p2 + m = (m− n + 1)p

p2 + (n−m− 1)p + m = 0

c. By applying the quadratic formula to the equation from (b), we get

p =
(m− n + 1)±

√
(m− n + 1)2 − 4m

2
We choose the plus sign to get the desired equation.

q = (m− n + 1)− p

=
2(m− n + 1)

2
−

(m− n + 1) +
√

(m− n + 1)2 − 4m

2

=
(m− n + 1)−

√
(m− n + 1)2 − 4m

2

d. We are given that m = pq = 5336063 and n = (p− 1)(q − 1) = 5331408; we use the values in
the formulas from (c) to obtain p = 2617 and q = 2039.

Problem 4. (4)

a. Evelyn’s goal is to recover the plaintext of the message, which is x. She knows both ea and
ez and that they are coprime, so gcd(ea, ez) = 1. Thus there exist s, t with sea + tez = 1, and
they can be easily calculated with the extended Euclidean algorithm. Evelyn knows the two
ciphertexts, xea and xez , and thus can easily recover the plaintext:

(xea)s (xez)t = xsea+tez mod m = x1 = x

Since this is the plaintext, we are done.

b. For m = 4171, ea = 47, and ez = 101, find the numerical plaintext from which the ciphertexts
2467 and 2664 were computed.

The extended Euclidean algorithm yields the final matrix row
[
43 −20 1

]
; from this we

define s = 43, t = −20 such that 43 · 47 + (−20) · 101 = 1. Hence:

x = 2467s · 2664t (mod 4171)

= 246743 · 2664−20 (mod 4171)

= 246743 ·
(
2664−1

)20 (mod 4171)

With the Euclidean algorithm, we find 2664−1 mod 4171 = 2300.

246743 = 1306 (mod 4171)

230020 = 3137 (mod 4171)

Hence x = 1306 · 3137 mod 4171 = 1000.

Problem 5. (8) Let G be a group under multiplication and define an action of G (as a group)
on G (as a set) by g.a = gag−1.

a. To show that
(
a ∼ b ⇐⇒ ∃ g ∈ G s.t. g.a = b

)
is an equivalence relation on G, we must

show that it is reflexive, symmetric, and transitive.
Is a ∼ a? 1a1−1 = 1a1 = a, so a ∼ a.
Does a ∼ b =⇒ b ∼ a? If a ∼ b, then there exists g s.t. gag−1 = b. Take h = g−1. Then
h.b = h(gag−1)h−1 = g−1gag−1g = 1a1 = a, and b ∼ a.
Does a ∼ b ∧ b ∼ c =⇒ a ∼ c? If a ∼ b and b ∼ a, then there exist g and h s.t. gag−1 = b and
hbh−1 = c. Take i = hg. Then i.a = (hg)a(hg)−1 = hgag−1h−1 = h(g.a)h−1 = hbh−1 = h.b = c,
and a ∼ c.
Thus ∼ is an equivalence relation on G.

b. We have N(x) =
{
g ∈ G

∣∣ gxg1 = x
}
; to show that N(x) is a subgroup of G, we must show

that it contains the identity element, is closed under multiplication, and is closed under inversion.
Is 1 ∈ N(x)? 1x1−1 = 1x1 = x, so 1 ∈ N(x).
Does g, h ∈ N(x) =⇒ gh ∈ N(x)? (gh)x(gh)−1 = ghxh−1g−1 = gxg−1 = x, so gh ∈ N(x).
Does g ∈ N(x) =⇒ g−1 ∈ N(x)?

gxg−1 = x

g−1gxg−1 = g−1x

xg−1 = g−1x

xg−1g = g−1xg

x = g−1xg

Thus g−1 ∈ N(x), and N(x) is a subgroup of G.

c. Defining Z(G) =
{
g ∈ G

∣∣ gyg−1 = y∀ y ∈ G
}
, show that Z(G) is a subgroup of G. We mirror

the proof of (b).
Is 1 ∈ Z(G)? ∀ y ∈ G, 1y1−1 = 1y1 = y, so 1 ∈ Z(G).
Does g, h ∈ Z(G) =⇒ gh ∈ Z(G)? ∀ y ∈ G(gh)y(gh)−1 = ghyh−1g−1 = gyg−1 = y, so
gh ∈ Z(G).
Does g ∈ Z(G) =⇒ g−1 ∈ Z(G)?

∀ y ∈ G, gyg−1 = y

∀ y ∈ G, g−1gyg−1 = g−1y

∀ y ∈ G, yg−1 = g−1y

∀ y ∈ G, yg−1g = g−1yg

∀ y ∈ G, y = g−1yg

Thus g−1 ∈ Z(G), and Z(G) is a subgroup of G.
It was possible to show that

Z(G) =
⋂
x∈G

N(x)

and thus that if N(X) is a subgroup, then the intersection of all N(x) must be a subgroup. You
needed to prove that the subgroup relation is closed under intersection, though, which many
people neglected to do.

Problem 6. (4) To produce a maximal spanning tree, we simply modify an existing Minimum
Spanning Tree algorithm (Prim’s, Kruskal’s, Boruvka’s, etc.) and change the edge sorting and/or
selection criteria from lightest to heaviest. Proving correctness will mirror the correctness proofs
for the MST algorithm with the same modifications.

Alternatively, you could simply write a wrapper for an existing Minimum Spanning Tree algo-
rithm that simply negates the weights of all the edges and then calls a known Minimum Spanning
Tree algorithm. The proof of correctness would simply rely on the fact that Minimum Spanning
Trees make no restriction on negative weight edges, and that the Minimum Spanning Tree of the
negated graph is indeed a Maximal Spanning Tree of the original graph.

Problem 7. (4) Prove that a simple graph without loops has at least 2 vertices of the same
degree.

� The maximal degree on a graph with n nodes is n−1, and the minimal degree is 0. Consider
two cases. In the first case, the maximal degree is attained, and so there exists some node which
is directly connected to all others. Thus all nodes must have degree at least 1, and the degrees
of the n nodes range from 1 to n− 1. In the second case, there is no node with degree n− 1. It
is thus possible for there to be isolated nodes, but since the highest possible degree is now n− 2,
the degrees of the n nodes range in this case from 0 to n− 2.

Note that in either case, there are only n − 1 possible degrees, and n nodes. Thus, by the
Pigeonhole principle, there must exist some degree k such that at least 2 nodes have degree k. �

Problem 8. (8)

a. The two maximal weakly connected components are {1, 2, 3} and {1, 2, 4}. If there were a
way to partition the graph into maximal, weakly connected subgraphs, then node 4 must be
contained in a maximal WCS. We know that this component is {1, 2, 4}. This implies that 3 is
itself a maximally connected subgraph, but this contradicts the fact that {1, 2, 3} is the maximal
WCS containing 3. Thus we cannot achieve the desired partition.

b)Maximal SCC’s are: {3, 6, 5}, {1, 7, 2}, {4}
c)Take node n ∈ V (J) and n ∈ V (K). Then for any node j ∈ V (J), ∃ a path from j to n

and from n to j, since J is a SCC. Also, for any node k ∈ V (K), ∃ a path from n to k and from
k to n. Thus we can construct a path from j to k and from k to j through n by concatenating
the path from j to n with the one from n to k, and the path from k to n with that from n to j.
Therefore J ∪K is a strongly connected component.

d)We want to show that every vertex is in exactly one maximal strongly connected component.
We know from (c) that if a vertex is present in more than 1 SCC, then those two SCC’s can be
combined to form another (larger) SCC. Thus if a vertex V is in a maximal SCC, then it cannot
be a member of any other maximal SCC — else those two SCC’s could be merged into a larger
SCC, contradicting the initial maximality. Finally, all vertices will be a part of at least one SCC
- namely, the SCC containing just that one vertex.

Problem 10. (4) Solve for x: 3x ≡ 1 (mod 5) with 2x ≡ 6 (mod 8). The inverse of 3 (mod 5)
is 2. Multiplying the first equation by 2 yields 6x ≡ 2 (mod 5), therefore x ≡ 2 (mod 5). So
x = 5s + 2 for some integer s. (*)

Substituting in the second equation, we get:

10s + 4 ≡ 6 (mod 8)

10s ≡ 2 (mod 8)

2s ≡ 2 (mod 8)

s ≡ 1 (mod 4)

So s = 4t + 1; substituting that in for s in equation (*) above yields x = 20t + 5 + 2 = 20t + 7 for
some integer t. Therefore x ≡ 7 (mod 20) is the solution, with x = 7 the simplest such solution.

Problem 11. (4) We must solve the set of simultaneous equations:

x ≡ 3 (mod 15)(1)

x ≡ 2 (mod 7)(2)

x ≡ 0 (mod 4)(3)

Let us first solve the latter pair for x:
From (3), we have x = 4 · s for some integer s. Substituting into (2) gives us 4 · s ≡ 2 (mod 7)

By inspection, 2 is the inverse of 4 (mod 7), so we multiply both sides to yield 2 · 4 · s ≡ 2 · 2
(mod 7) and thus s ≡ 4 (mod 7). Thus s = 7 · t + 4 for some integer t. Substituting back into
x = 4 · s, we have x = 4(7 · t + 4) = 28 ∗ t + 16. Substituting this into (1) yields 28 · t + 16 ≡ 3
(mod 15). Subtracting 16 from both sides and reducing 28 to 13 mod 15 gives 13 · t ≡ −13 ≡ 2
(mod 15). By inspection, 7 is the inverse of 13 (mod 15), thus 7 · 13 · t ≡ 7 · 2 (mod 15) and thus
t ≡ 14 (mod 15). Thus t = 15 · u + 14 for some integer u. Substituting back into x = 28 · t + 16,
we have x = 28(15 ·u+14)+16. We are interested in the smallest positive such solution x, which
arises when u = 0: x = 28(14) + 16 = 408 pieces of gold.

Problem 9. (8)

a. Here’s one possible path:

(vs)(st)(ty)(yx)(xw)(wu)(uv)(vu)(uw)(ws)(sw)(wt)(tw)(wx)(xy)(yt)(ts)(sv)

b. Here’s the algorithm in Java-style pseudocode (the book’s algorithmic language is hard to
understand):
Say you have an object Chamber, with a method getPaths(), that gives you a list of paths. Each
path object has a method, marked(), that tells you if it has been traversed, and a method mark()
that marks it. Lastly, path has another method, getOtherEnd(Chamber c), that gives you the
chamber that this path connects c to. So here’s the algorithm:

public void TarrySearch(Chamber c) {
List l = c.getPaths();
\\ go through all the paths connected to chamber c
for (Iterator iter = l.iterator(); iter.hasNext();) {
Path p = (Path)iter.next();
\\ if the path has not already been traversed
if (!p.marked()) {
p.mark();
Chamber next = p.getOtherEnd(c);
List l2 = next.getPaths();
boolean marked = false;
\\ see if the other chamber has been visited
for (Iterator iter2 = l2.iterator(); iter2.hasNext();) {
Path p2 = (Path)iter2.next();
if (p2.marked())

marked = true;
}
\\ if it hasn’t, go to it
if (!marked) TarrySearch(next);
}

}
}

Note that there is no need to handle the marking with E’s, as that is handled by the recursive
function returning.

c. We were quite lenient in grading this part. Anyone who provided a convincing argument that
the algorithm would traverse every edge in both directions received full credit.

Basically, the argument should have been as follows. There are two different cases when travers-
ing an edge. Either you find that the chamber at the other end has already been visited, or you
find that it has not. In the first case, you will immediately travel back along the same edge,
exploring it twice. In the second case, you will continue on you merry way. Note that in this
case, the edge will be marked with an E. Yet once you reach the point where there are no longer
any unvisited edges, you will begin traversing back, following the edges with E’s marked on them.
It is at this point that all those edges will be traversed for the second time. One can easily see
that only one such path of E’s can exist, and so you will end up back at the start with everything
visited twice.

d. The Tarry search is quite similar to a DFS, but it is NOT exactly a DFS. It does work in the
same depth first manner, except it works off of edges rather than nodes. A DFS keeps track of
what nodes have been seen, and so will do a bit less work than the Tarry algorithm (none of that
traversing-and-then-going-back stuff).

