Transactions

- Because of barcode technology, stores can collect data (called Market Basket Data) on millions of transactions.
- Typically, a transaction represents the contents of a single shopping cart.
- A "1" in the table indicates a particular item (column) that is purchased as part of a particular transaction (row).

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>millions of transactions</td>
<td></td>
</tr>
<tr>
<td>thousands of items</td>
<td></td>
</tr>
</tbody>
</table>

Sets of Items vs. Sets of Transactions

- We are interested in finding sets of related items – those that typically appear together in a shopping cart.
- We use lowercase letters (a, b, c) to represent items and uppercase letters (A, B, C) to represent sets of items (itemsets).
- We are also interested in sets of transactions; we use \(T(A) \) to represent the set of all transactions that include every item in itemset \(A \).
- Note that \(A \subseteq B \) implies that \(T(A) \supseteq T(B) \).
 - This is because the more items we have in an itemset the fewer transactions there are that include all the items in the itemset.
 - Example: there are lots of people who buy Poptarts, but many fewer who buy both Poptarts and lobster.

Measuring the Support of an Itemset

- An itemset \(A \) is only interesting if it occurs in a significant number of transactions.
 - In other words, we want \(|T(A)| \) to be "large enough".
 - Notation: we use \(\#(A) \) to represent \(|T(A)| \); in other words, it's the number of transactions that include all items of itemset \(A \).
- The support of itemset \(A \) is defined as \(\#(A) / \#(\emptyset) \).
 - \(\#(\emptyset) \) is just the total number of all transactions.
- We say itemset \(A \) is supported if \(\text{support}(A) > s_0 \), where \(s_0 \) is a constant that the user gets to choose.
 - \(s_0 \) is typically a small fraction of a percent.
 - "A is supported" is another way of saying that the items of \(A \) appear together in a significant number of transactions.

Goal: Find all Supported Itemsets

- Outline of algorithm:
 - Choose a set of candidate itemsets.
 - Run through all the transactions and count how many times each candidate itemset appears.
 - Itemsets that appear sufficiently often are reported.
 - This algorithm should work as long as our set of candidate itemsets is not too large.
- Strategy 1: Check all possible itemsets.
 - For 1000 items (not unusually large), there are \(2^{1000} \) subsets.
 - \(2^{1000} = (2^{10})^{100} = (10^3)^{100} = 10^{300} \)
 - We can't possibly check this many itemsets either.

Finding Supported Itemsets II

- Strategy 2: Check only the itemsets that actually occur.
 - A single transaction might include, say, 40 items.
 - We can generate candidate itemsets by looking at subsets of these 40 items; we can do this for each transaction.
 - Number of subsets (for one typical transaction) = \(2^{40} = (2^{10})^4 = 10^{12} \approx 1 \text{ trillion} \).
 - We can't check this many itemsets either.

Finding Supported Itemsets III

- Strategy 3: Build candidate itemsets by adding one item at a time.
 - Note that itemset \(\{a, b, c, d\} \) is supported only if itemset \(\{a, b, c\} \) is supported.
 - In other words, once we find an unsupported itemset, adding an additional item will only make it less supported.
 - Algorithm for finding supported itemsets of size \(k+1 \):
 - Assume we already know \(L_k \), the set of all supported itemsets of size \(k \).
 - Generate new candidate itemsets of size \(k+1 \) by looking for transactions that contain some \(A \in L_k \) and then adding one more item to \(A \) from that transaction.
 - Run through all the transactions and count how many times each candidate itemset appears.
 - Report \(L_{k+1} \) as all candidates that appear sufficiently often.
Finding Supported Itemsets IV

- Strategy 4: Build candidate itemsets from subsets
 - If \{a, b, c, d\} is supported then so are \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, and \{b, c, d\}
 - In other words, if any subset is unsupported then the set is unsupported

- Strategy 4 Algorithm: for finding supported itemsets of size \(k+1\)
 - Assume we already know \(L_k\), the set of all supported itemsets of size \(k\); further, \(L_k\) is in lexicographic order
 - Generate new candidate itemsets (of size \(k+1\)) by combining itemsets \(A\) and \(B\) in \(L_k\) where \(A\) and \(B\) are chosen such that \(A\) is before \(B\) in lexicographic order and \(A\) agrees with \(B\) except for the last item
 - [Pruning]: Reject a candidate itemset \(C\) if any size-\(k\) subset of \(C\) is missing from \(L_k\)
 - Report \(L_{k+1}\) = all remaining candidates that appear sufficiently often among all the transactions

Example: Strategy 4

- Let \(L_3 = \{\{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, c, e\}, \{b, c, d\}\}\)
- Generated candidates (before pruning):
 - \{a, b, c, d\}
 - \{a, c, d, e\}
- Candidates after pruning:
 - \{a, b, c, d\}
- Note that \{a, c, d, e\} was pruned because \{a, d, e\} is missing from \(L_3\)

Association Rules

- An association rule has the form \(A \rightarrow B\) where \(A\) and \(B\) are itemsets
- Each association rule has a confidence factor
 - This indicates how often the rule appears to have "worked" in the dataset
 - The confidence factor for \(A \rightarrow B\) is defined as
 - \#(A \cup B) / \#(A)
 - In other words: Of all the times that \(A\) appears in transactions, what fraction also includes the items of \(B\)

Example:

\[(\text{bread, milk}) \rightarrow (\text{eggs})\]
- The rule is a way of expressing the idea that people who buy bread and milk are likely to also buy eggs

Example confidence factor:

\[\frac{\text{#(bread, milk, eggs)}}{\text{#(bread, milk)}}\]

Using Association Rules

- For a rule \(A \rightarrow B\), \(A\) is the antecedent and \(B\) is the consequent
- By finding association rules, we can answer useful questions
 - Find all rules with Coke as a consequent
 - Find all rules with bagels in the antecedent
 - Find all rules with sausage in the antecedent and mustard as the consequent
- What should be placed near sausage to encourage mustard sales?

Confidence vs. Support

- A rule with a high confidence factor is not necessarily useful
 - Example: Suppose there is exactly one transaction that includes both Poptarts and lobster and that transaction also includes pizza
 - The confidence factor for \((\text{lobster, Poptarts}) \rightarrow \{\text{pizza}\}\) is
 \[\frac{\text{#(Poptarts, lobster, pizza)}}{\text{#(Poptarts, lobster)}} = 1\]
 - This rule has high confidence, but low support

- The support for a rule \(A \rightarrow B\) is defined as
 \[\text{support}(A \rightarrow B) = \text{support}(A \cup B) = \frac{\#(A \cup B)}{\#(\emptyset)}\]

Reporting the Useful Association Rules

- Suppose we already know
 - All supported itemsets
 - The value of support\((C)\) for each supported itemset \(C\)
- Observe that if \(C\) is a supported itemset and \(C=A\cup B\) then
 - \(A \rightarrow B\) is an association rule that is supported, \(A\) is supported (so we know support\((A)\)), and the confidence factor for \(A \rightarrow B\) is given by \(\text{support}(C) / \text{support}(A)\)
- Example: suppose the following itemsets are known to have the given support (measured in fractions of a percent)
 - \(0.3\) (bread)
 - \(0.25\) (eggs)
 - \(0.2\) (milk)
 - \(0.15\) (bread, milk)
 - \(0.10\) (bread, eggs)
 - \(0.08\) (bread, milk)
 - \(0.05\) (bread, eggs, milk)
- Find the association rules involving all of bread, eggs, and milk and determine the confidence factor for each rule