1. Reading: K. Rosen *Discrete Mathematics and Its Applications*, 3.4

2. The main message of this lecture:

A recursively defined function f admits iterative (straight) computation $f(0), f(1), \ldots, f(n)$ as well as recursive (backward) when the algorithm computing $f(n)$ invokes $f(n-1)$ which invokes $f(n-2)$, etc. Efficiency of those methods can be very different.

Consider an example of a function power defined recursively:

1. $\text{power}(0) = 1$
2. $\text{power}(n + 1) = 2 \cdot \text{power}(n)$

We can use either of two approaches. If we want to find $\text{power}(12)$, for example, we can begin with $\text{power}(0) = 1$ and from here compute $\text{power}(1) = 2 \cdot \text{power}(0) = 2 \cdot 1 = 2$, $\text{power}(2)$, $\text{power}(3)$, and so on, until we finally get to $\text{power}(12)$. A pseudocode algorithm using this approach is shown below.

```plaintext
procedure \text{power}(n : \text{nonnegative integer})
\begin{align*}
x &:= 0 \text{ for } i = 0 \text{ to } n \\
x &:= x \cdot 2
\end{align*}
\{x is \text{power}(n)\}
```

The second approach to computing $\text{power}(n)$ uses the recursive definition of power directly. Algorithm $\text{rpower}(n)$

1. procedure $\text{rpower}(n : \text{nonnegative integer})$
2. if $n = 0$ then
3. $\text{rpower}(n) := 1$
4. else
5. $\text{rpower}(n) := 2 \cdot \text{rpower}(n - 1)$

To understand how the algorithm $\text{rpower}(n)$ works, let us consider how we could compute $\text{rpower}(4)$, for example. We can find the value of $\text{rpower}(4)$ if we know the value of $\text{rpower}(3)$, but to compute $\text{rpower}(3)$, we must first compute $\text{rpower}(2)$, and to do this we must first compute $\text{rpower}(1)$, therefore, we must first compute $\text{rpower}(0)$. Aha!-this we can do, by the basis step. Knowing the value of $\text{rpower}(0)$, we can then find the value of $\text{rpower}(1)$, then $\text{rpower}(2)$, then $\text{rpower}(3)$, and finally $\text{rpower}(4)$.

Now suppose we start to execute algorithm $\text{rpower}(n)$ with the input value $n > 0$. lines 2 and 3 are passed over because $n > 0$. When the algorithm gets to the line 5, it temporarily suspends activity on computing rpower with an input value n and invokes itself with a smaller input value. The execution of algorithm rpower with an input value of $n - 1$, if $n - 1 > 0$, will pass over lines 2 and 3 and then invoke algorithm rpower with the input value of $n - 2$. This process will continue, with successive invocations, until the input value is finally 0 and the output value, 1, can be computed by the basis step, lines 2 and 3. This final invocation of the algorithm will then give this output value to the second-to-last invocation, and so on. Finally,
the original invocation of \texttt{rpower} can be completed. Note that in some sense writing algorithm \texttt{rpower} is easier than \texttt{power}: the former itself carrying out the work we had to do in writing the loop of algorithm \texttt{power}. Algorithm \texttt{rpower}(n) is an example of a \textbf{recursive algorithm}, one that invokes itself. Many programming languages allow such recursion, and it is very natural to use a recursive algorithm to compute a sequence that has been defined recursively.

Definition 15.1. An algorithm is called \textbf{recursive} if it works by reducing to its own value on smaller inputs. Recursive algorithms are usually performed backwards.

Example 15.2. A recursive algorithm for computing $\gcd(a,b)$

```plaintext
procedure \texttt{gcd}(a, b : nonnegative integers with $a < b$)
if $a = 0$ then \texttt{gcd}(a, b) := b
else \texttt{gcd}(a, b) := \texttt{gcd}(b \mod a, a)
```

Example 15.3. A recursive algorithm for computing Fibonacci numbers.

```plaintext
procedure \texttt{r fibonacci}(n : nonnegative integer)
if $n = 0$ then $\texttt{rfibonacci}(n) = 0$
else if $n = 1$ then $\texttt{rfibonacci}(n) = 1$
else $\texttt{rfibonacci}(n) := \texttt{rfibonacci}(n - 1) + \texttt{rfibonacci}(n - 2)$
```

Here the recursive process of invoking algorithm with less input values \textbf{branches} which causes an exponential blow-up of its complexity (= the number of additions performed for computing $\texttt{rfibonacci}(n)$): this algorithm requires $f_{n+1} - 1$ additions to find f_n. (Note, that f_n grows faster than $\left(\frac{1 + \sqrt{5}}{2}\right)^n > 1.6^n.$) Let us prove that by induction on n.

Base: $n = 0$ (the number of additions is 0 which is equal to $f_1 - 1$). $n = 1$ (the number of additions is still 0 which is equal to $f_2 - 1$).

Step: The number of additions $\#$ in $\texttt{rfibonacci}(n)$ equals

\[
1 + \# \text{ of additions in } \texttt{rfibonacci}(n-1) + \# \text{ of additions in } \texttt{rfibonacci}(n-2) = 1 + (f_{n-1}) + (f_{n-2}) = f_n + f_{n-1} - 1 = f_{n+1} - 1.
\]

Surprisingly, the straightforward \textit{iterational} algorithm for Fibonacci numbers takes only $n - 1$ additions to compute f_n. Such a huge difference in favor of the iterational algorithm (linear vs. exponential) has an easy explanation: the recursive algorithms branches each time it invokes itself and it computes the same sums $f_{k-1} + f_k$ independently along each of the branches. To the contrary, the iterational algorithm computes each sum $f_{k-1} + f_k$ only once and then just uses this sum as many times as necessary.

```plaintext
procedure \texttt{i fibonacci}(n : nonnegative integer)
if $n = 0$ then $y = 0$ else
begin $x := 0$, $y := 1$
for $i := 1$ to $n - 1$
begin $z := x + y$, $x := y$, $y := z$
end
end
{\text{\{}$y$ is the $n$th Fibonacci\text{\}}}
```

Claim: for $n > 1$ this algorithm requires only $n - 1$ additions to compute f_n. Indeed, it takes $n - 1$ loops to get to f_n, each making only one addition.

Homework assignments. (due Friday 03/02).

15A: Rosen3.4-2; 15B: Rosen3.4-8.