ALGORITHMS AND COMPLEXITY

Algorithm — A finite sets of precise instructions for performing a computation

Example: Finding the maximum element

PROCEDURE \(\text{MAX} (a_1, a_2, \ldots, a_n : \text{integers}) \)

\[\text{MAX} := a_1 \]

\[\text{FOR } i = 2 \text{ TO } n \]

\[\text{IF } \text{MAX} \leq a_i \text{ THEN } \text{MAX} := a_i \]

{MAX is the largest element}

Written in Pseudocode

Input/Output

Definiteness

Finiteness

Properties: Basic

Correctness

Generality

Effectiveness

Desired

Number of comparisons in \(\text{MAX} = 2(n-1) + 1 = 2n - 1 \). Complexity \(O(n) \).
THE LINEAR SEARCH ALGORITHM

PROCEDURE LINEAR SEARCH (x: INTEGER, \(q_1, q_2, \ldots, q_n \): DISTINCT INTERGERS)

\[i := 1 \]

WHILE (\(i \leq n \) AND \(x \neq q_i \))

\[i := i + 1 \]

IF \(i \leq n \) THEN LOCATION := \(i \)
ELSE LOCATION := 0

{ LOCATION IS THE INDEX OF TERM THAT EQUALS \(x \), OR 0 IF \(x \) IS NOT FOUND }

GOAL: LOCATE AN ELEMENT \(x \) IN THE LIST OF DISTINCT ELEMENTS \(q_1, q_2, \ldots, q_n \)

NUMBER OF COMPARISONS \(C \):

- IF \(x \) IS \(A_1 \), \(C = 3 \)
- IF \(x \) IS \(A_i \), \(C = 2i + 1 \)
- IF \(x \) IS NOT IN THE LIST \(C = 2n + 2 \)**

WORST CASE

COMPLEXITY IS \(O(n) \)
Binary Search Algorithm

Procedure binary search (x: integer, a₁, a₂, ..., aₙ: increasing integers)

i := 1 \{ i is left endpoint of search intervals \}

j := n \{ j is right endpoint of search intervals \}

while i < j begin

m := ⌊(i+j) / 2⌋

if x > aₘ then i := m+1

else j := m

end

if x = aᵢ then location := i

else location := 0

\[n = 2^k \quad (k = \log_2 n) \]

Two comparisons at each stage →

Two comparisons when i = j

After the first stage \(2^{k-1} \) terms

After the second \(2^{k-2} \) number of stages \(k = \log_2 n \)

Complexity \(2\log_2 n + 2 = O(\log n) \)
AVERAGE CASE ANALYSIS

LINEAR SEARCH ALGORITHM.
(ASSUME X IS IN THE LIST)

n TYPES OF POSSIBLE INPUTS:
X = a_1, X = a_2, ..., X = a_n
ALL ARE ASSUMED TO BE EQUALLY LIKELY

AVERAGE # OF COMPARISONS

\[
\frac{3 + 5 + 7 + \cdots + (2n+1)}{n} =
\]

\[
= \frac{(2\cdot1+1) + (2\cdot2+1) + (2\cdot3+1) + \cdots + (2\cdot n+1)}{n} =
\]

\[
= \frac{2(1+2+3+\cdots+n) + n}{n} = \frac{2\left[\frac{n(n+1)}{2}\right] + n}{n} =
\]

\[
= \frac{n(n+1)+n}{n} = n+2 = \Theta(n)
\]
Complexity

- $O(1)$
- $O(\log n)$
- $O(n)$
- $O(n \log n)$
- $O(n^k)$
- $O(b^n)$ ($b > 1$)
- $O(n!)$

Terminology

- **Constant Complexity**
- **Logarithmic Complexity**
- **Linear Compl.**
- **$n \log n$ Compl.**
- **Polynomial Compl.**
- **Exponential Compl.**
- **Factorial Compl.**

Polynomial ~ Tractable (Feasible)

Otherwise ~ Intractable

NP - Solution can be checked in polytime

P - Solution can be found in polytime

Satisfiability of propositions is NP.

Checking $f(x) = T$ is linear.

Finding x such that $f(x) = T$ is Exponent.

P=NP? Problem

HW 2.1.6

HW 2.2. 4, 10, 12 - 55