GRAPH

Graph \equiv set + binary relation

V - vertices

E - edges

Definition

A **simple graph** $G = (V, E)$

$V \neq \emptyset$ set of vertices

E set of unordered pairs of distinct vertices

Example

Computer net connected by telephone lines. Data flows both ways. No computer is connected to itself by telephone.
MULTIGRAPH = GRAPH WITH MULTIPLE EDGES

DEF: A multiGraph \(G = (V, E, \mathcal{f}) \)

- \(V \neq \emptyset \) SET OF VERTICES
- \(E \) SET OF EDGES
- \(\mathcal{f} \) FUNCTION FROM \(E \) TO THE SET OF UNORDERED PAIRS OF VERTICES

EXAMPLE: COMPUTER NET WITH MULTIPLE TELEPHONE LINES

A diagram showing vertices labeled \(a, b, c, 1, 2, 3, 4 \) connected by lines indicating edges.

\[\mathcal{f}(1) = \mathcal{f}(2) = \{a, b\} \]
\[\mathcal{f}(3) = \mathcal{f}(4) = \{b, c\} \]

Parallel edge's \(\mathcal{f}(e_1) = \mathcal{f}(e_2) \)

Still no loops, direction does not matter.

AUTO, AIRPLANE CONNECTION MAPS
Pseudograph = Multigraph with loops

def a Pseudograph $G = (V, E, \phi)$

- $V \neq \emptyset$ set of vertices
- E set of edges
- ϕ vertices reading function from E to set of unordered pairs of vertices not necessarily distinct.

Example. A computer net with multiple telephone lines, including self-connected for diagnostic purposes.
Directed Graph = Graph with directed edges

Let a **Directed Graph** $G = (V, E)$

- $V \neq \emptyset$: set of vertices
- $E \subseteq V \times V$: edges = ordered pairs of vertices

Example: Computer net with asymmetric lines, no multiple lines in the same direction.

Directed Multigraph $G = (V, E, \mathcal{f})$

- $V \neq \emptyset$: set of vertices
- E: set of edges
- $\mathcal{f}: E \rightarrow V^2$: reads initial and terminal vertices of a given edge
def ADJACENT VERTICES u, v ∈ V such that (u, v) ∈ E, E = E(u, v) connects u, v. E is incident with u, v. u, v are endpoints of E.

def DEGREE OF A VERTEX = # OF EDGES INCIDENT WITH IT (A LOOP CONTRIBUTES TWICE!)

AN ISOLATED VERTEX

\[\text{deg}(a) = 2\]
\[\text{deg}(b) = 6\]
\[\text{deg}(c) = 3\]
\[\text{deg}(d) = 3\]
\[\text{deg}(e) = 0\]

TH. (THE HANDSHAKING THEOREM) \[G = (V, E)\] PSEUDOGRAPH (UNDIRECTED)
\[2e = \sum_{v \in V} \text{deg}(v)\]
\[e = |E|\]

PROOF. EVERY EDGE IS COUNTED TWICE IN E.
TH. AN UNDIRECTED (PSEUDO)GRAPH HAS AN EVEN NUMBER OF VERTICES OF ODD DEGREE.

PROOF. LET $V = V_1 + V_2$ WHERE $V_1 =$ VERTICES WITH EVEN DEGREES, $V_2 =$ ODD.

$2e = \sum_{v \in V} \deg(v) = \sum_{v \in V_1} \deg(v) + \sum_{v \in V_2} \deg(v)$

EVEN EVEN

$\Rightarrow \sum_{v \in V_2} \deg(v)$ is EVEN $\Rightarrow |V_2|$ is EVEN.