Characterizing Bipartite Graphs

Theorem: G is bipartite iff G has no odd-length cycles.

Proof: It’s pretty easy to see that if a graph has an odd-length cycle then it can’t be bipartite. (Suppose that you can partition the vertices into two sets V_1 and V_2 as required for bipartite and there is an odd length cycle $(x_0, x_1, \ldots, x_{2k}, x_0)$. Suppose without loss of generality that $x_0 \in V_1$. Then an easy induction argument shows that $x_{2i} \in V_1$ and $x_{2i+1} \in V_2$ for $0 = 1, \ldots, k$. But then the edge between x_{2k} and x_0 means that there is an edge between two nodes in V_1, and this gives a contradiction.

Conversely, if $G(V, E)$ has no odd-length cycles, we can partition the vertices in V into two sets by starting at an arbitrary vertex x_0, putting it in V_0, putting all the vertices you get to in one step from x_0 into V_1, putting all the vertices you can get to in exactly 2 steps into V_0, etc. It’s not hard to prove that this construction works if G has no odd-length cycles (and fails if it has one).

This construction also gives us a polynomial-time algorithm for checking if a graph is bipartite.
[You’re not responsible for this for the prelim/final.]
Graph Isomorphism

When are two graphs that may look different when they’re drawn, really the same?

Answer: \(G_1(V_1, E_1) \) and \(G_2(V_2, E_2) \) are isomorphic if they have the same number of vertices (\(|V_1| = |V_2|\)) and we can relabel the vertices in \(G_2 \) so that the edge sets are identical.

- Formally, \(G_1 \) is isomorphic to \(G_2 \) if there is a bijection \(f : V_1 \to V_2 \) such that \(\{v, v'\} \in E_1 \iff \{f(v), f(v')\} \in E_2 \).

- Note this means that \(|E_1| = |E_2|\)

In general, it’s very hard to tell if two graphs are isomorphic.
Reachability

Is there a path in graph G from vertex v to v'?

- if the vertices in a graph correspond to towns, and v and v' are connected by an edge if there’s a direct road link from v to v', then v is reachable from v' if there’s a way of driving from v to v'

- in a communication network, reachability describes who can (ultimately) communicate with whom.

How can we test if one vertex is reachable from another?
A Useful Representation of a Graph

We can represent a graph $G(V, E)$ by its adjacency matrix.

If $V = (v_1, \ldots, v_n)$, then the adjacency matrix is an $n \times n$ matrix.

- $A = (a_{ij})$, where $a_{ij} = 1$ if there is an edge from v_i to v_j; otherwise $a_{ij} = 0$.
- in a multigraph, a_{ij} is the number of edges from i to j.

Example:

$$
\begin{bmatrix}
0 & 0 & 2 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0
\end{bmatrix}
$$
Note:

- an undirected graph will have a symmetric adjacency matrix: \(a_{ij} = a_{ji} \).
- the indegree of \(v_i \) = sum of entries in column \(i \)
- the outdegree of \(v_i \) = sum of entries in row \(i \)
- the adjacency matrix is a good way of representing a graph in a computer
Adjacency Matrices and Reachability

What does the adjacency matrix have to do with reachability?

Theorem: Suppose A is the adjacency matrix of G and $A^m = (a_{ij}^{(m)})$. Then $a_{ij}^{(m)}$ is the number of paths of length m from v_i to v_j.

Proof: By induction on m. Let $P(m)$ be the statement of the theorem. $P(1)$ is immediate from the definition of the adjacency matrix. Assume $P(m)$. Suppose $A^{m+1} = (a_{ij}^{(m+1)})$. By definition,

$$a_{ij}^{(m+1)} = \sum_{k=1}^{n} a_{ik}^{(m)} a_{kj}$$

- $a_{ik}^{(m)} = \#$ paths of length m from v_i to v_k
- $a_{kj} = \#$ edges (paths of length 1) from v_k to v_j
- Therefore $a_{ik}^{(m)} a_{kj} = \#$ paths from v_i to v_j of length $m+1$ whose second-last vertex (just before v_j) is v_k
- Therefore $a_{ij}^{(m+1)} = \sum_{k=1}^{n} a_{ik}^{(m)} a_{kj}$ is the total number of paths of length $m+1$ from v_i to v_j
• v_j is reachable from v_i iff there is a path of length $\leq n - 1$ from v_i to v_j iff the ij in at least one of A, A^2, \ldots, A^{n-1} is 1 (where $n = |V|$).

• The ij entry of $A + A^2 + \cdots + A^n$ gives the total number of paths of length $\leq n$ from v_i to v_j.
Example:

$$A = \begin{bmatrix}
0 & 0 & 2 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0
\end{bmatrix}$$

$$A^2 = AA = \begin{bmatrix}
0 & 0 & 2 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0
\end{bmatrix} \times \begin{bmatrix}
0 & 0 & 2 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 2 & 2 & 0 & 1 \\
0 & 1 & 0 & 0 & 1
\end{bmatrix}$$

$$A^3 = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & 2 \\
0 & 2 & 0 & 0 & 1
\end{bmatrix}$$
A Better Algorithm

Each time we multiply two \(n \times n \) matrices, we need \(n \) multiplications to compute the \(ij \) entry, and thus \(n^3 \) multiplications altogether.

- There are theoretically better algorithms for matrix multiplication that take roughly \(n^{2.5} \) multiplications.

Thus, to compute \(A^1, \ldots, A^n \), requires roughly \(n^4 \) multiplications.

- Could cut this down to \(n^3 \log(n) \)

Warshall’s algorithm gives an even better approach to computing reachability.

- I won’t cover Warshall’s algorithm in class. You can read about it in the text if you want, but it won’t be on the prelim/final.

- You can also use Dijkstra’s algorithm (which I will cover) to compute reachability efficiently.
Tentative Prelim Coverage

• Chapter 0:
 • Sets
 * Set builder notation
 * Operations: union, intersection, complementation, set difference
 • Relations:
 * reflexive, symmetric, transitive, equivalence relations
 • Functions
 * Injective, surjective, bijective
 • Important functions and how to manipulate them:
 * exponent, logarithms, ceiling, floor, mod, polynomials
 • Summation and product notation
 • Matrices (especially how to multiply them)
 • Proof and logic concepts
 * logical notions (⇒, ≡, ¬)
 * Proofs by contradiction
• Chapter 1
 ○ You do not have to write algorithms in their notation
 ○ You must be able to read algorithms in their notation
 ○ Procedures, recursion, recursive calls
 ○ Loop invariants
 ○ Analysis of algorithms
 * Relative ordering (n^2 vs. $n \log n$)
• Chapter 2
 ○ induction vs. strong induction
 ○ guessing the right inductive hypothesis
 ○ inductive (recursive) definitions
• Chapter 3
 ○ terminology: bipartite, complete, degree, (Eulerian/Hamiltonian) path, tree, clique (number)
 ○ adjacency matrix
 * three representations of a relation
 ○ reachability
Transitive Closure

Recall that the transitive closure of a relation R is the least relation R^* such that

1. $R \subseteq R^*$

2. R^* is transitive (so that if $(u, v), (v, w) \in R^*$, then so is (u, w)).

How are the graphs $G(V, E)$ and $G^*(V, E^*)$ corresponding to R and R^* related?

- G^* is the result of putting an edge between u and v is there’s a path from u to v in G

How do we prove this?

- Let $G_k(V, E_k)$ be such that there is an edge $(v, v') \in E_k$ iff there is a path of length $\leq k$ in the original graph G.
- Let R_k be the relation corresponding to G_k.
- Note that $R_1 = R$. Prove by induction that $R_k \subseteq R^*$ for all k. Then show that R_{n-1} is transitively closed, so $R_{n-1} = R^*$.
Shortest Paths

Suppose you have a graph with weights on the edges. (Think of the weights as driving times.) You want to find the minimum length path.

- if there are no weights on the edges, think of this as the special case where all the weights are 1.
- let $\text{len}(u, v)$ be the weight of the edge (u, v) ($\text{len}(u, v) = \infty$ if there is no edge from u to v).

Could do it by *brute force*:

- If there are n vertices, find all paths with no repeated vertices, and compute their weight.
- There could be as many as $(n - 2)!$ paths!

Can we do better?
Dijkstra’s Algorithm: Key Idea

Suppose we want to find the shortest path from v_0 to v_n.

Generalize: Find the shortest path from v_0 to every other vertex.

How?

- First find the closest vertex and the path to it, then the next closest, and so on.
- Sooner or later v_n will be the next vertex added.
Why does this help?
 - Can compute the next closest vertex recursively.

How do we find the vertex closest to v_0?
 - Easy: just look
If $U = \{u_0, u_1, \ldots, u_k\}$ are the k closest vertices to v_0 (listed in order, with $u_0 = v_0$), how do we find u_{k+1}?

Suppose v is the next-closest vertex:
 - The shortest path from v_0 to v must go through $\{u_1, \ldots, u_k\}$
 - If it got to v through some other vertex, that vertex would be closer to v_0 than v!
 - That means the minimum length path from v_0 to v must have length
 $\begin{align*}
 d(v) &= \min_{j=0}^{k}(d(u_j) + len(u_j, v)) \\
 len(u_j, v) &\text{ is the weight of the edge from } u_j \text{ to } v
 \end{align*}$
 - Compute (*) for each vertex not in U, and pick the shortest.
Dijkstra’s Algorithm: Outline

At kth step of the algorithm, assume (inductively) we have:

- u_1, \ldots, u_k, the k closest vertices to v_0 (not counting v_0 itself)
- $d(u_j)$ (the minimum distance from v_0 to u_j)
- the minimum distance $d_k(v)$ from v_0 to any vertex v, going on path that involve only u_1, \ldots, u_k

At the $(k + 1)$st step:

- for every vertex v connected to u_k, compute $d(u_k) + \text{len}(u_k, v)$
- If this is better than $d_k(v)$, then let this be $d_{k+1}(v)$; otherwise $d_{k+1}(v) = d_k(v)$
- pick the $(k + 1)$st closest vertex
Dijkstra’s Algorithm: Example

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>v_0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>v_1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>v_2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>v_3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>v_4</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>v_5</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>v_6</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>v_7</td>
</tr>
</tbody>
</table>
Dijsktra’s Algorithm

Input $G(V, E)$ [a graph]
v_0, v_n [start and end]

Algorithm Shortest Path
$d(v_0) \leftarrow 0$ [Initialize distance from v_0]
for $i = 1$ to n [$n = |V|$]
\[d(v_i) \leftarrow \infty \]
endfor
$U \leftarrow \{v_0\}$ [Initialize closest vertices]
$u \leftarrow v_0$ [u is most recent entry into v]
repeat until $u = v_n$
\[\text{for } i = 1 \text{ to } n \]
\[\text{if } (u, v_i) \in E \text{ and } v_i \notin U, \text{ then} \]
\[d(v_i) \leftarrow \min(d(v_i), d(u) + \text{len}(u, v_i)) \]
endfor
mindist $\leftarrow \infty$ [find next closest vertex]
for $i = 1$ to n
\[\text{if } v_i \notin U \text{ and } d(v_i) < \text{mindist then} \]
\[\text{mindist } \leftarrow d(v_i); \ u \leftarrow v_i \]
endfor
$U \leftarrow U \cup \{u\}$
endrepeat