Binary Search

Theorem: Binary search takes at most $[\log_2(n)] + 1$ loop iterations on a list of n items.

Proof: Let $P(n)$ be the statement that if $L - F = n \geq 0$, then we go through the loop at most $[\log_2(L + 1 - F)] + 1$ times.

Basis: If $L - F = 0$, then we go through the loop at most once (0 times if the $w = w_i$ is actually on the list), and $\log_2(1) + 1 = 1$.

Inductive step: Assume $P(0), \ldots, P(n)$. If $L - F = n + 1$, then either $w = w_{\lfloor (F + L)/2 \rfloor}$ (in which case we quit), or (a) $w < w_{\lfloor (F + L)/2 \rfloor}$ or (b) $w > w_{\lfloor (F + L)/2 \rfloor}$. Let L', F' be values of L and F on the next iteration.

In case (a), $L' = \lfloor (F + L)/2 \rfloor - 1$, $F' = F$, so

$$L' + 1 - F' = \lfloor (F + L)/2 \rfloor - F = \lceil (L - F)/2 \rceil$$

In case (b) $F' = \lceil (F + L)/2 \rceil + 1$, $L' = L$, so

$$L' + 1 - F' = L - \lfloor (F + L)/2 \rfloor = \lceil (L - F)/2 \rceil$$
Either way, by strong induction, it takes at most

\[1 + \lfloor \log_2(\lceil (L - F)/2 \rceil) \rfloor + 1 \]

times through the loop. (One more than it takes starting at \((L', F')\).

Two facts about the floor function:

- \(\lfloor x/2 \rfloor \leq \frac{x}{2} + \frac{1}{2} \) if \(x \) is an integer
- \(1 + \lfloor x \rfloor = \lfloor 1 + x \rfloor \) for all \(x \in R \)

Therefore:

\[
\begin{align*}
1 + \lfloor \log_2(\lceil (L - F)/2 \rceil) \rfloor + 1 \\
\leq 1 + \lfloor \log_2((L + 1 - F)/2) \rfloor + 1 \\
= \lfloor 1 + \log_2((L + 1 - F)/2) \rfloor + 1 \\
= \lfloor \log_2(2) + \log_2((L + 1 - F)/2) \rfloor + 1 \\
= \lfloor \log_2((L + 1 - F)/2) \rfloor + 1
\end{align*}
\]

This is what we wanted to prove!
Bubble Sort

Suppose we wanted to sort \(n \) items. Here’s one way to do it:

Input \(n \) [number of items to be sorted]
\(w_1, \ldots, w_n \) [items]

Algorithm BubbleSort

\[
\text{for } i = 1 \text{ to } n - 1 \\
\quad \text{for } j = 1 \text{ to } n - i \\
\quad\quad \text{if } w_j > w_{j+1} \text{ then switch}(w_j, w_{j+1}) \text{ endif}
\]

endfor

endfor

Why is this right:

- Intuitively, because highest elements “bubble up” to the top

How many comparisons?

- Best case, worst case, average case all the same:

\[
\circ (n - 1) + (n - 2) + \cdots + 1 = n(n - 1)/2
\]
Proving Bubble Sort Correct

We want to show that the algorithm is correct by induction. What’s the statement of the induction?

\(P(k) \) is the statement that after \(k \) iterations of the outer loop, \(w_{n-k+1}, \ldots, w_n \) are the \(k \) highest items, sorted in the right order.

Basis: How do we prove \(P(1) \)? By a nested induction!

This time, take \(Q(l) \) to be the statement that after \(l \) iterations of the inner loop, \(w_{l+1} \) is higher than \(\{w_1, \ldots, w_l\} \).

Basis: \(Q(1) \) holds because after the first iteration of the inner loop, \(w_2 > w_1 \) (thanks to the switch statement).

Inductive step: After \(l \) iterations, the algorithm guarantees that \(w_{l+1} > w_l \). Using the induction hypothesis, \(w_{l+1} \) is also higher than \(\{w_1, \ldots, w_{l-1}\} \).

\(Q(n - 1) \) implies \(P(1) \), so we’re done with the base case of the main induction.

[**Note:** For a really careful proof, we need better notation (for value of \(w_l \) before and after the switch).]
Inductive step (for main induction): Assume $P(k)$. By the subinduction, after $n - k - 1$ iterations of the inner loop, w_{n-k} is alphabetically after $\{w_1, \ldots, w_{n-(k+1)}\}$. Combined with $P(k)$, this tells us w_{n-k}, \ldots, w_n are the $k + 1$ highest elements. This proves $P(k + 1)$.
How to Guess What to Prove

Sometimes formulating \(P(n) \) is straightforward; sometimes it’s not. This is what to do:

• Compute the result in some specific cases
• Conjecture a generalization based on these cases
• Prove the correctness of your conjecture (by induction)
Example

Suppose \(a_1 = 1 \) and \(a_n = a_{[n/2]} + a_{[n/2]} \) for \(n > 1 \). Find an explicit formula for \(a_n \).

Try to see the pattern:

- \(a_1 = 1 \)
- \(a_2 = a_1 + a_1 = 1 + 1 = 2 \)
- \(a_3 = a_2 + a_1 = 2 + 1 = 3 \)
- \(a_4 = a_2 + a_2 = 2 + 2 = 4 \)

Suppose we modify the example. Now \(a_1 = 3 \) and \(a_n = a_{[n/2]} + a_{[n/2]} \) for \(n > 1 \). What’s the pattern?

- \(a_1 = 3 \)
- \(a_2 = a_1 + a_1 = 3 + 3 = 6 \)
- \(a_3 = a_2 + a_1 = 6 + 3 = 9 \)
- \(a_4 = a_2 + a_2 = 6 + 6 = 12 \)

\(a_n = 3n! \)
Theorem: If $a_1 = k$ and $a_n = a_{[n/2]} + a_{[n/2]}$ for $n > 1$, then $a_n = kn$ for $n \geq 1$.

Proof: By strong induction. Let $P(n)$ be the statement that $a_n = kn$.

Basis: $P(1)$ says that $a_1 = k$, which is true by hypothesis.

Inductive step: Assume $P(1), \ldots, P(n)$; prove $P(n + 1)$.

\[
\begin{align*}
a_{n+1} &= a_{[(n+1)/2]} + a_{[(n+1)/2]} \\
&= k\left(\left[\frac{n+1}{2}\right] + \left[\frac{n+1}{2}\right]\right) \quad \text{[Induction hypothesis]} \\
&= k\left(\left[\frac{n+1}{2}\right] + \left[\frac{n+1}{2}\right]\right) \\
&= k(n + 1)
\end{align*}
\]

We used the fact that $\left\lfloor n/2 \right\rfloor + \left\lfloor n/2 \right\rfloor = n$ for all n (in particular, for $n + 1$). To see this, consider two cases: n is odd and n is even.

- if n is even, $\left\lfloor n/2 \right\rfloor + \left\lfloor n/2 \right\rfloor = n/2 + n/2 = n$
- if n is odd, suppose $n = 2k + 1$
 - $\left\lfloor n/2 \right\rfloor + \left\lfloor n/2 \right\rfloor = (k + 1) + k = 2k + 1 = n$

This proof has a (small) gap:

- We should check that $\left\lfloor (n + 1)/2 \right\rfloor \leq n$
In general, there is no rule for guessing the right inductive hypothesis. However, if you have a sequence of numbers

\[r_1, r_2, r_3, \ldots \]

and want to guess a general expression, here are some guidelines for trying to find the *type* of the expression (exponential, polynomial):

- Compute \(\lim_{n \to \infty} \frac{r_{n+1}}{r_n} \)
 - if it looks like \(\lim_{n \to \infty} \frac{r_{n+1}}{r_n} = b \notin \{0, 1\} \), then \(r_n \) probably has the form \(Ab^n + \cdots \).
 - You can compute \(A \) by computing \(\lim_{n \to \infty} \frac{r_n}{b^n} \)
 - Try to compute the form of \(\cdots \) by considering the sequence \(r_n - Ab^n \); that is,
 \[r_1 - Ab, r_2 - Ab^2, r_3 - Ab^3, \ldots \]
- \(\lim_{n \to \infty} \frac{r_{n+1}}{r_n} = 1 \), then \(r_n \) is most likely a polynomial.
- \(\lim_{n \to \infty} \frac{r_{n+1}}{r_n} = 0 \), then \(r_n \) may have the form \(A/b^{f(n)} \), where \(f(n)/n \to \infty \)
 - \(f(n) \) could be \(n \log n \) or \(n^2 \), for example

Once you have guessed the form of \(r_n \), prove that your guess is right by induction.
More examples

Come up with a simple formula for the sequence

$$1, 5, 13, 41, 121, 365, 1093, 3281, 9841, 29525$$

Compute limit of \(r_{n+1}/r_n \):

\[
\begin{align*}
5/1 &= 5, \quad 13/5 \approx 2.6, \quad 41/13 \approx 3.2, \quad 121/41 \approx 2.95, \\
&\quad \ldots, \quad 29525/9841 \approx 3.000
\end{align*}
\]

Guess: limit is 3 (\(\Rightarrow r_n = A3^n + \cdot \))

Compute limit of \(r_n/3^n \):

\[
\begin{align*}
1/3 &\approx .33, \quad 5/9 \approx .56, \quad 13/27 \approx .5, \quad 41/81 \approx .5, \\
&\quad \ldots, \quad 29525/3^{10} \approx .5000
\end{align*}
\]

Guess: limit is 1/2 (\(\Rightarrow r_n = \frac{1}{2}3^n + \cdot \))

Compute \(r_n - 3^n/2 \):

\[
(1 - 3/2), (5 - 9/2), (13 - 27/2), (41 - 81/2), \ldots
\]

\[
= -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, \ldots
\]

Guess: general term is \(3^n/2 + (-1)^n/2 \)

Verify (by induction ...)

10
One more example

Find a formula for

\[
\frac{1}{1 \cdot 4} + \frac{1}{4 \cdot 7} + \frac{1}{7 \cdot 10} + \cdots + \frac{1}{(3n - 2)(3n + 1)}
\]

Some values:

• \(r_1 = 1/4 \)
• \(r_2 = 1/4 + 1/28 = 8/28 = 2/7 \)
• \(r_3 = 1/4 + 1/28 + 1/70 = (70 + 10 + 4)/280 = 84/280 = 3/10 \)

Conjecture: \(r_n = n/(3n + 1) \). Let this be \(P(n) \).

Basis: \(P(1) \) says that \(r_1 = 1/4 \).

Inductive step:

\[
r_{n+1} = r_n + \frac{1}{(3n+1)(3n+4)}
\]

\[
= \frac{n}{3n+1} + \frac{1}{3n+1}(3n+4)
\]

\[
= \frac{n(3n+4)+1}{(3n+1)(3n+4)}
\]

\[
= \frac{3n^2+4n+1}{(3n+1)(3n+4)}
\]

\[
= \frac{(n+1)(3n+1)}{(3n+1)(3n+4)}
\]

\[
= \frac{n+1}{3n+4}
\]
Faulty Inductions

Part of why I want you to write out your assumptions carefully is so that you don’t get led into some standard errors.

Theorem: All women are blondes.

Proof by induction: Let $P(n)$ be the statement: For any set of n women, if at least one of them is a blonde, then all of them are.

Basis: Clearly OK.

Inductive step: Assume $P(n)$. Let’s prove $P(n + 1)$.

Given a set W of $n+1$ women, one of which is blonde. Let A and B be two subsets of W, each of which contains the known blonde, whose union is W.

By the induction hypothesis, each of A and B consists of all blondes. Thus, so does W. This proves $P(n) \Rightarrow P(n + 1)$.
Take W to be the set of women in the world, and let $n = |W|$. Since there is clearly at least one blonde in the world, it follows that all women are blonde!

Where’s the bug?
Theorem: Every integer \(> 1 \) has a unique prime factorization.

[The result is true, but the following proof is not:]

Proof: By strong induction. Let \(P(n) \) be the statement that \(n \) has a unique factorization, for \(n > 1 \).

Basis: \(P(2) \) is clearly true.

Induction step: Assume \(P(2), \ldots, P(n) \). We prove \(P(n+1) \). If \(n+1 \) is prime, we are done. If not, it factors somehow. Suppose \(n+1 = rs \) \(r, s > 1 \). By the induction hypothesis, \(r \) has a unique factorization \(\Pi_i p_i \) and \(s \) has a unique prime factorization \(\Pi_j q_j \). Thus, \(\Pi_i p_i \Pi_j q_j \) is a prime factorization of \(n+1 \), and since none of the factors of either piece can be changed, it must be unique.

What’s the flaw??
Problem: Suppose $n+1 = 36$. That is, you’ve proved that every number up to 36 has a unique factorization. Now you need to prove it for 36.

36 isn’t prime, but $36 = 3 \times 12$. By the induction hypothesis, 12 has a unique prime factorization, say $p_1p_2p_3$. Thus, $36 = 3p_1p_2p_3$.

However, 36 is also 4×9. By the induction hypothesis, $4 = q_1q_2$ and $9 = r_1r_2$. Thus, $36 = q_1q_2r_1r_2$.

How do you know that $3p_1p_2p_3 = q_1q_2r_1r_2$.

(They do, but it doesn’t follow from the induction hypothesis.)

This is a *breakdown error*. If you’re trying to show something is unique, and you break it down (as we broke down $n + 1$ into r and s) you have to argue that nothing changes if we break it down a different way. What if $n + 1 = tu$?

- The actual proof of this result is quite subtle
Theorem: The sum of the internal angles of a regular n-gon is $180(n - 2)$ for $n \geq 3$.

Proof: By induction. Let $P(n)$ be the statement of the theorem. For $n = 3$, the result was shown in high school. Assume $P(n)$; let’s prove $P(n + 1)$. Given a regular $(n + 1)$-gon, we can lop off one of the corners:

By induction, the sum of the internal angles of the n-gon is $180(n - 2)$ degrees; the sum of the internal angles of the triangle is 180 degrees. Thus, the internal angles of the original $(n + 1)$-gon is $180(n - 1)$. What’s wrong??

- When you lop off a corner, you don’t get a *regular* n-gon.

The fix: **Strengthen the induction hypothesis.**

- Let $P(n)$ say that the sum of the internal angles of any n-gon is $180(n - 2)$.
Consider 0-1 sequences in which 1’s may not appear consecutively, except in the rightmost two positions.

- 010110 is not allowed, but 010011 is

Prove that there are 2^n allowed sequences of length n for $n \geq 1$

Why can’t this be right?

“Proof” Let $P(n)$ be the statement of the theorem.

Basis: There are 2 sequences of length 1—0 and 1—and they’re both allowed.

Inductive step: Assume $P(n)$. Let’s prove $P(n + 1)$. Take any allowed sequence x of length n. We get a sequence of length $n + 1$ by appending either a 0 or 1 at the end. In either case, it’s allowed.

- If x ends with a 1, it’s OK, because $x1$ is allowed to end with 2 1’s.

Thus, $s_{n+1} = 2s_n = 22^n = 2^{n+1}$.

Where’s the flaw?

- What if x already ends with 2 1’s?

Correct expression involves separating out sequences which end in 0 and 1 (it’s done in Chapter 5, but I’m not sure we’ll get to it)
Methods of Proof

Typically you’re trying to prove a statement like “Given X, prove (or show that) Y”. This means you have to prove

$$X \Rightarrow Y$$

In the proof, you’re allowed to assume X, and then show that Y is true, using X.

- A special case: if there is no X, you just have to prove Y or $true \Rightarrow Y$.

Alternatively, you can do a proof by contradiction: Assume that Y is false, and show that X is false.

- This amounts to proving

$$\neg Y \Rightarrow \neg X$$
Example

Theorem n is odd iff n^2 is odd, for $n \in \mathbb{N}^+$.

Proof: We have to show

1. n odd \Rightarrow n^2 odd
2. n^2 odd \Rightarrow n odd

For (1), if n is odd, it is of the form $2k + 1$. Hence,

$$n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

Thus, n^2 is odd.

For (2), we proceed by contradiction. Suppose n^2 is odd and n is even. Then $n = 2k$ for some k, and $n^2 = 4k^2$. Thus, n^2 is even. This is a contradiction. Thus, n must be odd.
A Proof By Contradiction

Theorem: $\sqrt{2}$ is irrational.

Proof: By contradiction. Suppose $\sqrt{2}$ is rational. Then $\sqrt{2} = a/b$ for some $a, b \in \mathbb{N}^+$. We can assume that a/b is in lowest terms.

- Therefore, a and b can’t both be even.

Squaring both sides, we get

$$2 = a^2/b^2$$

Thus, $a^2 = 2b^2$, so a^2 is even. This means that a must be even.

Suppose $a = 2c$. Then $a^2 = 4c^2$.

Thus, $4c^2 = 2b^2$, so $b^2 = 2c^2$. This means that b^2 is even, and hence so is b.

Contradiction!

Thus, $\sqrt{2}$ must be irrational.
A Bad Proof

Prove \(\log(x/y) = \log(x) - \log(y) \)

Proof:

\[
\begin{align*}
\log(x/y) &= \log(x) - \log(y) \\
\log(x) + \log(1/y) &= \log(x) - \log(y) \\
\log(x) + \log(y^{-1}) &= \log(x) - \log(y) \\
\log(x) - \log(y) &= \log(x) - \log(y)
\end{align*}
\]

What’s wrong?

- You need to connect the statements (using \(\Leftrightarrow \), for example)