Euclidean Algorithm: Analysis

Input \(m, n \) \([m, n \text{ natural numbers, } m \geq n]\)
\[
\text{num} \leftarrow m; \quad \text{denom} \leftarrow n \quad [\text{Initialize num and denom}]
\]
repeat until denom = 0
\[
q \leftarrow \text{num}/\text{denom}
\]
\[
\text{rem} \leftarrow \text{num} - (q \cdot \text{denom})
\]
\[
\text{num} \leftarrow \text{denom} \quad [\text{New num}]
\]
\[
\text{denom} \leftarrow \text{rem} \quad [\text{New denom}; \text{note } num \geq denom]
\]
endrepeat

Output \(\text{num} \) \([\text{num} = \gcd(m, n)]\)

How many times do we go through the loop in the Euclidean algorithm:

- Best case: Easy. Never!
- Average case: Too hard
- Worst case: Can’t answer this exactly, but we can get a good upper bound.
 - See how fast denom goes down in each iteration.

Towers of Hanoi: Analysis

procedure \(H(n, r, s) \) \([\text{Move } n \text{ disks from } r \text{ to } s]\)
\[
\text{if } n = 1 \text{ then } \text{robot}(r \rightarrow s)
\]
\[
\text{else } H(n - 1, r, 6 - r - s)
\]
\[
\text{robot}(r \rightarrow s)
\]
\[
H(n - 1, 6 - r - s, s)
\]
endif
return
endpro

Let \(h_n = \# \text{ moves to move } n \text{ rings from pole } r \text{ to pole } s \).

- Clearly \(h_1 = 1 \)
- Algorithm shows that \(h_n = 2h_{n-1} + 1 \)
 - \(h_2 = 3; \ h_3 = 7; \ h_4 = 15; \ldots \)
 - \(h_n = 2^n - 1 \)

We’ll prove this formally later, when we also show that this is optimal.

Sequential Search: Analysis

Suppose we have a linked list — a sequence of words in alphabetical order. Given a new word, we want to determine if it’s on the list, and where.

Input \(n \) \([\text{number of words in list}]\)
\[
w_1, \ldots, w_n \quad [\text{alphabetized list}]
\]
\[
w \quad [\text{search word}]
\]

Algorithm SeqSearch
\[
i \leftarrow 1
\]
\[
\text{repeat until } i > n \text{ or } w \leq w_i
\]
\[
i \leftarrow i + 1
\]
end repeat

if \(w = w_i \) then print \(i \) else print ‘failure’ endif

How many times do we go through the loop?

- Best case: 0
- Worst case: \(n \)
- Average case: roughly \(n/2 \) if \(w \) is on the list.
Binary Search: Analysis

Sequential search is terrible for finding a word in a dictionary. Can do much better with random access.

- it’s like playing 20 questions — cut the search space in half with each question!

Input
- \(n \) [number of words in list]
- \(w_1, \ldots, w_n \) [alphabetized list]
- \(w \) [search word]

Algorithm BinSearch
- \(F \leftarrow 1; L \leftarrow n \) [Initialize range]
- \(i \leftarrow \lfloor (F + L)/2 \rfloor \)
- **repeat until** \(w = w_i \) or \(F > L \)
 - if \(w < w_i \) then \(L \leftarrow i - 1 \) else \(F \leftarrow i + 1 \) endif
- **end repeat**
 - if \(w = w_i \) then print \(i \) else print ‘failure’ endif

How many times do we go through the loop?

- Best case: 0
- Average case: too hard for us
- Worst case: \(\lfloor \log_2(n) \rfloor + 1 \)
 - After each loop iteration, \(F - L \) is halved.

Writing Up a Proof by Induction

1. State the hypothesis very clearly:
 - Let \(P(n) \) be the statement ... [some statement involving \(n \)]

2. The basis step
 - \(P(k) \) holds because ... [where \(k \) is the base case, usually 0 or 1]

3. Inductive step
 - Assume \(P(n) \). We prove \(P(n + 1) \) holds as follows ... Thus, \(P(n) \Rightarrow P(n + 1) \).

4. Conclusion
 - Thus, we have shown by induction that \(P(n) \) holds for all \(n \geq k \) (where \(k \) was what you used for your basis step). [It’s not necessary to always write the conclusion explicitly.]

Induction

This is perhaps the most important technique we’ll learn for proving things.

Idea: To prove that a statement is true for all natural numbers, show that it is true for 1 (base case or basis step) and show that if it is true for \(n \), it is also true for \(n + 1 \) (inductive step).

- The base case does not have to be 1; it could be 0, 2, 3, ...
- If the base case is \(k \), then you are proving the statement for all \(n \geq k \).

It is sometimes quite difficult to formulate the statement to prove.

IN THIS COURSE, I WILL BE VERY FUSSY ABOUT THE FORMULATION OF THE STATEMENT TO PROVE. YOU MUST STATE IT VERY CLEARLY. I WILL ALSO BE PICKY ABOUT THE FORM OF THE INDUCTION PROOF.

A Simple Example

Theorem: For all positive integers \(n \),
\[
\sum_{k=1}^{n} k = \frac{n(n+1)}{2}.
\]

Proof: By induction. Let \(P(n) \) be the statement
\[
\sum_{k=1}^{n} k = \frac{n(n+1)}{2}.
\]

Basis: \(P(1) \) asserts that \(\sum_{k=1}^{1} k = \frac{1(1+1)}{2} \). Since the LHS and RHS are both 1, this is true.

Inductive step: Assume \(P(n) \). We prove \(P(n + 1) \).
\[
\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + (n + 1)
= \frac{n(n+1)}{2} + (n + 1) \text{[Induction hypothesis]}
= \frac{n(n+1)+2(n+1)}{2}
= \frac{(n+1)(n+2)}{2}.
\]

Thus, \(P(n) \) implies \(P(n + 1) \), so the result is true by induction.
Notes:

- You can write $P(n)$ instead of writing “Induction hypothesis” at the end of the line, or you can write “$P(n)$” at the end of the line.
 - Whatever you write, make sure it’s clear when you’re applying the induction hypothesis
- Notice how we rewrite $\sum_{k=1}^{n+1} k$ so as to be able to appeal to the induction hypothesis. This is standard operating procedure.

Another example

Theorem: $(1 + x)^n \geq 1 + nx$ for all nonnegative integers n and all $x \geq 0$.

Proof: By induction on n. Let $P(n)$ be the statement $(1 + x)^n \geq 1 + nx$.

Basis: $P(0)$ says $(1 + x)^0 \geq 1$. This is clearly true.

Inductive Step: Assume $P(n)$. We prove $P(n + 1)$.

$$(1 + x)^{n+1} = (1 + x)^n(1 + x)$$

$$\geq (1 + nx)(1 + x)$$

[Induction hypothesis]

$$= 1 + nx + x + nx^2$$

$$= 1 + (n + 1)x + nx^2$$

$$\geq 1 + (n + 1)x$$

Euclidean Algorithm: Worst Case

This time, we’ll do a formal analysis. Suppose we start the algorithm with inputs m and n. Let denom_0, denom_1, … be the values of denom on successive iterations of the loop. Similarly num_0, num_1, …

Lemma 1: For all natural numbers n, $\text{denom}_{n+2} \leq \text{denom}_n/2$.

Proof: We don’t need induction here. The proof we did before works. (We actually proved $<$, but it’s easier to use \leq.)

Lemma 2: For all natural numbers n, $\text{denom}_n \leq \text{denom}_0/2^n$.

By induction. Let $P(n)$ be the statement $\text{denom}_{2n} \leq \text{denom}_0/2^n$.

Basis: $\text{denom}_0 \leq \text{denom}_0/1$.

Inductive Step: Assume $P(n)$.

$$\text{denom}_{2(n+1)} = \text{denom}_{2n+2}$$

$$\leq \text{denom}_{2n}/2$$

[Lemma 1]

$$\leq \text{denom}_0/(2^n \times 2)$$

[Induction Hypothesis]

$$= \text{denom}_0/2^{n+1}$$

Lemma 3: On input (m, n), we go through the loop at most $2^{\lceil \log_2 n \rceil} + 1$ times.

Proof:

$$\text{denom}_{2^{\lceil \log_2 n \rceil}} \leq \text{denom}_0/2^{\lceil \log_2 n \rceil} \leq n/n = 1$$

(Recall $2^{\log_2 n} = n$, so $2^{\lceil \log_2 n \rceil} \geq n$.)

Thus, $\text{denom}_{2^{\lceil \log_2 n \rceil} + 1} = 0$.
Towers of Hanoi

Theorem: It takes 2^n-1 moves to perform $H(n,r,s)$, for all positive n, and all $r,s \in \{1,2,3\}$.

Proof: Let $P(n)$ be the statement of the theorem.

Basis: $P(1)$ is immediate: robot($r \leftrightarrow s$) is the only move in $H(1,r,s)$, and $2^1-1 = 1$.

Inductive step: Assume $P(n)$. To perform $H(n+1,r,s)$, we first do $H(n,r,6-r-s)$, then robot($r \leftrightarrow s$), then $H(n,6-r-s,s)$. Altogether, this takes $2^n-1 + 1 + 2^n-1 = 2^{n+1} - 1$ steps.

A Matching Lower Bound

Theorem: Any algorithm to move n rings from pole r to pole s requires at least $2^n - 1$ steps.

Proof: By induction, taking the statement of the theorem to be $P(n)$.

Basis: Easy: Clearly it requires (at least) 1 step to move 1 ring from pole r to pole s.

Inductive step: Assume $P(n)$. If we want to move $n+1$ rings from r to s, at some point we have to move the largest ring. At this point, the pole we want to move the largest ring to must be clear, and all the other n rings must be on the third pole. Thus, by the induction hypothesis, $2^n - 1$ moves were used to get them there.

Now we’re going to need at least $2^n - 1$ moves to move the n rings back on top of the largest ring. This means we need at least

$$2^n - 1 + 1 + 2^n - 1 = 2^{n+1} - 1$$

Strong Induction

Sometimes when you’re proving $P(n+1)$, you want to be able to use $P(j)$ for $j < n$, not just $P(n)$. You can do this with strong induction.

1. Let $P(n)$ be the statement ... [some statement involving n]

2. The basis step
 - $P(k)$ holds because ... [where k is the base case, usually 0 or 1]

3. Inductive step
 - Assume $P(k), \ldots, P(n)$ holds. We show $P(n+1)$ holds as follows ...

Although strong induction looks stronger than induction, it’s not. Anything you can do with strong induction, you can also do with regular induction, by appropriately modifying the induction hypothesis.

- If $P(n)$ is the statement you’re trying to prove by strong induction, let $P'(n)$ be the statement $P(1), \ldots, P(n)$ hold. Proving $P'(n)$ by regular induction is the same as proving $P(n)$ by strong induction.

An example using strong induction

Theorem: Any item costing $n > 7$ kopecks can be bought using only 3-kopeck and 5-kopeck coins.

Proof: Using strong induction. Let $P(n)$ be the statement that n kopecks can be paid using 3-kopeck and 5-kopeck coins, for $n \geq 8$.

Basis: $P(8)$ is clearly true since $8 = 3 + 5$.

Inductive step: Assume $P(8), \ldots, P(n)$ is true. We want to show that $P(n+1)$. If $n + 1$ is 9 or 10, then it’s easy to see that there’s no problem ($P(9)$ is true since $9 = 3 + 3 + 3$, and $P(10)$ is true since $10 = 5 + 5$). Otherwise, note that $(n + 1) - 3 = n - 2 \geq 8$. Thus, $P(n-2)$ is true, using the induction hypothesis. This means we can use 3- and 5-kopeck coins to pay for something costing $n-2$ kopecks. One more 3-kopeck coin pays for something costing $n+1$ kopecks.