1. **Faster Trigonometric Interpolation (but not the fastest!)**

We need to solve the system $Py = f$ in $O(n^2)$ flops. Rewriting this system we have that $y = P^{-1}f$. Using the fact that $P^TP = D$ we have:

$$P^TP = D \Rightarrow D^{-1}P^TP = I \Rightarrow P^{-1} = D^{-1}P^T$$

Substituting what we got for P^{-1} above into $y = P^{-1}f$ we have

$$y = D^{-1}P^Tf$$

Now, note that

$$D = \begin{bmatrix} d_1 & 0 & 0 & 0 \\ 0 & d_2 & 0 & 0 \\ 0 & 0 & d_3 & 0 \\ 0 & 0 & 0 & d_4 \end{bmatrix} \quad \text{then} \quad D^{-1} = \begin{bmatrix} \frac{1}{d_1} & 0 & 0 & 0 \\ 0 & \frac{1}{d_2} & 0 & 0 \\ 0 & 0 & \frac{1}{d_3} & 0 \\ 0 & 0 & 0 & \frac{1}{d_4} \end{bmatrix}$$

Note that the operation P^Tf is $O(n^2)$ flops since we can think of this as n inner products of a column of P^T and f. We would only store the appropriate column of P^T resulting in $O(n)$ storage. Taking into account D^{-1}, then we just need to divide the inner products by the appropriate d_k:

```matlab
def function F=myCSInterp(f)
    n=length(f); m=n/2; y=zeros(n,1);
    tau=(pi/m)*(0:n-1);
    for j=0:m
        if (j==0 | j==m)
            y(j+1)=(cos(j*tau).*f)/n;
        else
            y(j+1)=(cos(j*tau).*f)/m;
            y(j+m+1)=(sin(j*tau).*f)/m;
        end
    end
    F=struct('a',y(1:m+1),'b',y(m+2:n));
end
```

2. **Periodic Cubic Splines**

We know each cubic has 4 unknowns. Since there are $n-1$ cubics, this gives $4(n-1)$ total unknowns.

(a) The constraints that cause S to interpolate the data are ($q_i(x)$ is the i-th local cubic):

$$q_i(x_i) = y_i \quad \text{for } i = 1 : n - 1$$

$$q_i(x_{i+1}) = y_{i+1} \quad \text{for } i = 1 : n - 1$$

(b) The constraints that cause S to have continuous first derivatives at x_2 through x_{n-1} are:

$$q_i'(x_{i+1}) = q_{i+1}'(x_{i+1}) \quad \text{for } i = 1 : n - 2$$
(c) The constraints that cause S to have continuous second derivatives at x_2 through x_{n-1} are:

$$q_i''(x_{i+1}) = q_i''(x_{i+1}) \text{ for } i = 1 : n - 2$$

(d) The periodicity constraints are that $S'(0) = S'(T)$ and $S''(0) = S''(T)$ (note that the constraint $S(0) = S(T)$ has already been accounted for in (a)). This translates to:

$$q_1'(x_1) = q_{n-1}'(x_n)$$
$$q_1''(x_1) = q_{n-1}''(x_n)$$

3. Fun with Splines

Here are the steps to calculate the arc length:

(a) Find the spline coefficients a_i, b_i, c_i, d_i:

```matlab
V=MySpline(x,y);
```

where `MySpline` is a function that computes the coefficients using the Vandermonde representation. This function returns a matrix V that contains the coefficients.

(b) Create a function for $S'(x)$ that evaluates the derivative (using `Locate.m` and Horner’s rule for evaluation)

```matlab
function y=g(z,x,V);
% z is a vector of evaluation points
% x is a vector of interpolation points
% V is a matrix that contains the coefficients of the spline
n=length(z);
i=zeros(n,1);
for k=1:n
    i(k)=Locate(x,z);
end
sp=V(i,2) + z.* ( 2*V(i,3) + 3*V(i,4) .*z); %Horner’s rule
y=sqrt(1+sp.*sp);
```

(c) Integrate using `quad`

```matlab
n=length(x);
arc_length=quad(’g’,x(1),x(n),1e-5,[],x,y);
```

For this problem, I’m more concerned with the steps used to find the arc length than the actual MATLAB code. Nevertheless, I have included the code to aid in studying.