

COM S 213 – Fall 2002

ASSIGNMENT #6: Dynamic Array Class

DATE GIVEN: 10/17/02

DATE DUE: 10/24/02

PURPOSE:
To review operator overloads, dynamic allocation of arrays and to utilize destructors and
the array index operator overload.

ASSIGNMENT:
In our last lecture I prototyped a very simple integer Array class that could be used to do
rudimentary bounds checking while still being able to be used “like” an array in the sense
that the array index operator was employed to allow us to use the following syntax:

MyArray ma;

ma[0] = 5;

cout << ma[0] << endl;

This class was very limited as it hard coded the maximum array size at compile time.
Your assignment is to come up with a new version of MyArray (called IntArray) which
allows the size of the array to be determined at runtime. It will also be a little more
flexible than the original MyArray. The tasks you must complete are:

• IntArray will have a single constructor which takes an argument to specify the
initial size of the array (to be allocated dynamically)

• IntArray will have a destructor which deallocates memory (if there actually is
allocated memory)

• IntArray will have a member function called “resize” which allows the dynamic
array to be reallocated on the fly (preserving the contents of the array in doing so)

• Operator[] will be overloaded to allow assignments to array elements and the
retrieval of array elements using the syntax: array[i].

• All array element accesses will be checked for an out of bounds condition. If one
is detected, a message will be sent to cout indicating the condition.

You will test your code by writing a test program that demonstrates all error checking
and normal operations.

SUGGESTIONS
This should be fairly easy, preserving the contents of the array on a resize may be the
only potential tricky thing you’ll need to do. If you are “downsizing” the array via the
resize() method, it’s OK to loose the ability to reference the set of items that fall outside
the bounds of the newer (smaller) array.

