

COM S 213 – Fall 2002

ASSIGNMENT #4: More Menus

DATE GIVEN: 10/3/02

DATE DUE: 10/10/02

PURPOSE:
To test your understanding of “polymorphism” (also known as utilizing virtual member
functions)

ASSIGNMENT:
Consider a simple set of three classes that provide the ability to construct and navigate a
text based menu system. Each menu can have as many choices as you’d like, including
other menus. In order to implement such a system, you’ve chosen to utilize inheritance
and virtual member functions—and you’ve drawn a modest diagram of your classes
below:

MenuObject

void select();
void display();

MenuObject *parent
string name;

MenuItem

void select();
void display();

Menu

void select();
void processMenuChoice();
void display();
bool addItem();
bool removeItem();
bool insertItem();

int maxSize;
int numItems;
MenuObject *itemArray;

Here, the MenuObject class is a base class and MenuItem and Menu derive from it.
Notice inside the Menu class there is a dynamic array of MenuObject types (the base
class). This allows the Menu class to have one array of all of its items while still
allowing some variance in what type each item is (MenuItem or a nested Menu).

In this diagram I have given you some ideas for member function and variable names, but
I haven’t provided any parameter lists (if necessary) with the member functions. Your
assignment is to implement this structure with each of the member functions/variables
having the following meaning:

CLASS MEMBER NAME DESCRIPTION
MenuObject Select() When a MenuObject is selected some

action needs to be taken. The specific
action is implemented in the overridden
version of this member function in each
derived class. This member function
should always be overridden.

MenuObject Display() At some point a menu object will need to
be displayed. Exactly how that is done is
determined in the overridden version of
this member function in each derived
class. This member function should
always be overridden.

class. This member function should
always be overridden.

MenuObject Parent A MenuObject pointer to the “parent” of
this current MenuObject. If this is the
“top most” MenuObject this field will be
NULL.

MenuObject Name The name of this menu object. This is
what will be presented to the user when
displaying all MenuObjects in a particular
Menu.

MenuItem Select() This is the one of two member functions
for a MenuItem. All it needs to do is print
something out which says “Hey, you just
chose…” and complete that sentence with
the name of this MenuItem taken from the
base class. After a MenuItem has been
“selected” it will call select() for its parent
to keep the menu process “going”.

MenuItem Display() For now, all we do when displaying a
MenuItem is print out it’s name. You
probably want to avoid printing newlines
or anything like that, simply send the
name string, taken from the base class, to
cout.

Menu Display () Displays the name of this menu object
with a trailing asterisk to indicate that this
is a Menu (which has more choices that
will be displayed if selected).

Menu Select() When a Menu is selected, it’s contents
must be displayed and the user must be
given the choice of selecting one of the
items, going back “up” one level (if
appropriate) or quitting the program.
Choice should be presented to the user in
the form of a number that represents the
item followed by a call to the
corresponding MenuObject’s Display()
member function.

Menu ProcessMenuChoice() This member function prompts the user
for a menu choice (any menuobject in the
menu or “up one level” or “quit”) and then
either quits or calls “select” on the
appropriate MenuObject, or quits.

Menu AddItem() Adds a new MenuOject into the current
menu, at the end.

Menu RemoveItem() Removes the specified MenuItem from the
Menu.

Menu.
Menu InsertItem Inserts a new MenuObject into the Menu

at the specified location. Any existing
MenuItems at that location or further
down are moved down 1 space to
accommodate the insert.

Menu MaxSize The maximum number of MenuItems
allowed in this Menu. There should
probably be a constructor that takes this
number as an argument.

Menu ItemArray A dynamic array of MenuItems. This
array is allocated when the Menu object is
constructed. If a “setMaxSize()” setter is
implemented, the array may need to be
reallocated if more storage space is
necessary.

Menu NumItems The total number of MenuItems in the
current Menu (as a result of either add,
remove or insert calls).

SUGGESTIONS
OK, that’s a lot of information. This assignment isn’t nearly as daunting as it seems.
I’ve just outlined the classes and member functions specifically to steer you in the
direction of inheritance and virtual functions.

Draw this out on paper if you need to first to understand how it will be implemented.
Add constructors, getters and setters where appropriate. Make some judgment calls on
whether or not member variables/functions should be public, private or protected.

As always, feel free to send email with questions…

