
1

Lecture 22

Miscellaneous Topics 4

+ Memory Allocation

Declarations in Classes: Enumerations
n Since the class definition also provides a sense of “scope”, we can

perform declarations and definitions within the class definition.

n Indeed, we do just that with member functions and member
variables.

n But there are other types that can be declared and defined as well.

n We’ll look at enumerations first.

class Example

{

public:

 void setCounter(int argCounter=kInitialValue);

private:

 enum CounterValues {

 kInitialValue=0, kLastValue

 };

 int counter;

}

Declarations in Classes: Enumerations
n The constants defined in the enumeration may be used

anywhere in the class, and in other classes by the following
rules:

n If the enumerations are declared protected, they may be used
only in derived classes.

n If the enumerations are declared public, they may be accessed
from anywhere provided their fully qualified names are used:

int main()

{

 Example anExample;

 // In order to use the enumeration defined in Example

 // we must qualify it with the class name (Example::)

 anExample.setCounter(Example::kLastValue);

}

Declarations in Classes: Static Members
n A static member variable is a variable declared in the class

definition but is treated like a global variable:
n There is only one copy of it no matter how many instances of its

class exist

n If its value is changed by any one instance, the value is changed for
all the instances

n In effect, it is a global variable but only visible outside the class if
declared in the public section.

class Example

{

public:

 Example() { currentTotal = 0; }

 void addToTotal(int aValue);

private:

 static int currentTotal;

};

Static Members
n There’s only one problem…

n Since the static member doesn’t really exist in the class,
separate storage must be allocated for it outside the class.

n This is done in the form of a global variable using the fully
qualified name of the static member...

class Example

{

public:

 Example() { currentTotal = 0; }

 void addToTotal(int aValue);

private:

 static int currentTotal;

};

int Example::currentTotal = 0; // Define the static member

Static Members
n If you don’t define space for the static member in this

manner, you will get a linker error!

n The static member may be accessed outside of the class
only if it is declared in one of the class’ public sections.

n If so, the static member may be accessed anywhere by
using its fully qualified name:

int main()

{

 Example e1;

 Example::currentTotal = 5; // There are two ways to

 cout << e1.currentTotal << endl; // access the same var!

 return 0;

}

2

Static Members
n A static member function is a little different since there is already

only one copy of the code used to implement a member function.

n A static member function has no this pointer and cannot access
individual non-static member fields.

n However a static member function may be called without creating
an instance of the class in which it is defined...

class Example

{

public:

 static void printBanner() { cout << “Hello World” << endl; }

};

int main()

{

 Example::printBanner();

 return 0;

}

Demonstration #1

Declarations in Classes

Nested Classes
n In addition to declaring enumerations and static member

variables/functions within classes you can also define other
classes within classes.

n These are called “Nested Class Definitions”

n Consider the following:

class X { // X is an arbitrary class

public:

 class Y // Y is defined in X’s public section

 {};

private: // Z is defined in X’s private section

 class Z

 {};

};

Nested Classes
n The fact that class Y is defined in the public section of class X

means the following:

n Objects of class Y may be created outside the scope of X only
if fully qualified name is used (X::Y)

n The fact that class Z is defined in the private section of class X
means the following:
n Objects of class Z may only be created within the scope of X.

n If Y had been defined within a protected section of class X’s
definition, objects of type Y could be created anywhere in the
scope of X as well as in the scope of any class derived from X.

n Any member variables/functions of Y are accessible according to
the normal public, private and protected used in classes.

n Having said all of this, CodeWarrior does not appear to honor the
restrictions on Z and will let me declare a class of type X::Z
outside of the scope of X.

Nested Classes
n An example of nested class definitions might involve list

management.

n Consider the following:

class List {

public:

 List():the_head(NULL){} // standard constructor

 ~List(); // standard destructor

private:

 class Node { // Nested definition of Node

 public:

 string the_value; // the “value” of an element

 Node *next; // pointer to next element

 };

 Node *the_head; // the first element

};

Demonstration #2

Nested Class Definitions

3

Memory Allocation
n No matter what system or platform you are programming for,

there is one constant…

n Memory allocation is slow!

n The general problem is that no matter how good the generic
memory management algorithm is behind the new operator, it
is burdened by the fact that it must be prepared to allocate
and manage blocks of memory which are of varying sizes.

n Now, please keep in mind that slow is a relative term. When
looked at individually, even the slowest memory allocation is
still fairly fast under a modern OS and/or modern hardware.

n Under MacOS, memory management is particularly slow due
to there being an extra layer of indirection present (handles).

n So, what a perfect platform to talk about memory
management on!

Demonstration #3

Lots of Dynamic Allocation

Memory Allocation
n As you can see, even though memory allocation is slow, it still

takes a lot of memory allocations to slow us down.

n But, in the “real world”, you’d be surprised at how quickly repeated
memory allocation can slow down your program.

n Acknowledging this, C++ lets you do something truly bizarre…

n You can overload the new operator and define your own memory
management routines.

n Just try doing that in Java!!!!
n Of course, if you can overload new you must be able to overload

delete as well.

n Overloading the new and delete operators is done just like any
other operator overload, except there is a slightly special syntax:
n void *operator new(size_t);

n void operator delete(void *);

Memory Allocation
n OK, but that means I actually have to implement some

memory management routines!

n WHY would I want to do that?

n Because the generic memory management routines are
slow!

n They’re slow because they have to be able to deal with any
size object.

n If you know you will need to dynamically allocate a lot of the
same objects during the course of your program you can
define your own memory management routines for
allocations of that object type.

n A typical memory management routine to handle repeated
allocations of the same type can be implemented in a way
that will be more efficient than the generic routine.

n Let’s do it!

Memory Management
n The idea is somewhat simple, when you think about it.

n You allocate a block of memory (using the generic routine) to
form an “array” of the objects in question.

n When YourObject::operator new is called, you “give
out” one of your previously allocated objects.

n That means you need to keep track of what’s allocated and
what is not!

n When you start out, you’ll have something like this:

AllocatedUnallocated

Memory Management

n But how do you “dole out” pre-allocated objects in an
orderly fashion?

n First, you’ll need a pointer variable which will be used to
point to consecutive items in your array. We’ll call it
NextFree.

n It will, of course, start at the beginning of the array.

AllocatedUnallocated

NextFree

4

Memory Management
n When one object is allocated via a call to
YourObject::operator new, we’ll return the object that
NextFree is pointing at and then increment NextFree to
the next item in the array.

n That would look like this:

AllocatedUnallocated

NextFree

Memory Management
n But what happens when YourObject::operator
delete is called?

n We need to keep track of deleted objects as well.

n We do this in the form of a “pseudo” linked list.

n I say pseudo because in a regular linked list, the implication
is that each element is allocated only when necessary.

n What we’re going to do is make each object in our pre-
allocated array similar to a linked list Node with two fields,
the first is an instance of YourObject, the second is a
“next” pointer.

n It might look like this:
class Element {
public:
 YourObject theObject;
 Element *nextElement;
};

Memory Management
n Now, when we delete an object, we’ll put it at the beginning

of a linked list of “deleted” objects.

n Whenever YourObject::operator new is called, we’ll
first check to see if there are any objects on the “deleted
objects” list.

n If there are, we’ll return the first object from that list instead
of the object pointed at by NextFree.

n What happens if we delete that object we just allocated...

AllocatedUnallocated

NextFree
Deleted

Deleted

Memory Management
n OK, now let’s say that we allocated three more objects and

then delete the second object we allocated in that run.

AllocatedUnallocated

NextFree
Deleted

Deleted

Memory Management

n Now, let’s allocate another object.

n We’ll use the first one on our list of deleted objects...

AllocatedUnallocated

NextFree

Deleted

Memory Management
n But what happens if we allocate all the elements in our array?

n You can always fall back on the default operator new in your
YourObject::operator new code.

n As a matter of fact, in YourOperator::operator new, you
should always check that the size requested matches the size
of the object you’ve defined the memory handler for, and
default to ::operator new if it doesn’t.

n But what happens in this situation:

AllocatedUnallocated

NextFree

Deleted

5

Memory Management
n It’s actually pretty simple.

n We just allocate another array.

n It doesn’t matter if it’s not contiguous with the previous
array, our linked list of deleted objects will mean we’ll never
“lose reference” to any object:

AllocatedUnallocated

NextFree

Deleted

Memory Management
n Now, let’s allocate two more objects:

AllocatedUnallocated

NextFree

Deleted

Memory Management
n And now delete every other object:

AllocatedUnallocated

NextFree

Deleted

Deleted

Memory Management
n Any questions on the memory management algorithm?

n Let’s look at some code:

Demonstration #4

Better Dynamic Allocation ?

Lecture 22

Final Thoughts

