g Lecture 21

Multiple Inheritance

What is Multiple Inheritance?
= We defined inheritance earlier in the semester as a
relationship between classes.

= If class C inherits from class B it is normally the case that C is
a B or that C is a kind of B.

= But what happens when we discover that C is a kind of B and
C is also a kind of D?

For example, remember our Student and Instructor
classes? They both were derived from Person.

But let’s throw another class into the mix: Employee

= An Instructor is certainly a kind of Employee, but an
Instructor is also a kind of Person.

= This seems like a possible candidate for multiple inheritance!

What is Multiple Inheritance?

= In C++ code, multiple inheritance looks just like single
inheritance, except there are “multiple” base classes
specified.

= They are separated by commas.

= They may individually be declared as public, private or
protected.

= If a given class is not declared as being of type public, private
or protected, the default is private.

= Inherited member variables are accessible according to the
rules of single inheritance.

class Instructor : public Person, public Employee

Arguing about it...
= One can argue that multiple inheritance shouldn’t be
necessary if you've defined your class hierarchy properly.
= As a matter of fact, most books don’t cover it.
= Since every Employee really is a Person, should we be able
to do this?

class Employee : public Person

class Instructor : public Employee

class Student : public Person

Arguing about it...

= Well, certainly you can. Remember, this is C++. You can do
just about anything you want to!

= Here’s another wrench in the puzzle...

= What happens when a Student is an Employee as well?

= You still wouldn’t derive every Student from Employee

either through single or multiple inheritance.

What it might suggest is that you need to re-think your object

hierarchy before starting to code.

= This is usually the point of view of those who don't believe in
multiple inheritance.

= We won't settle the argument here.

= We will concentrate on the other side of the argument, which
was that sometimes you need to derive from two pre-existing
classes. It's called a “mix-in”.

What are Mix-Ins?
= A mix-in is really just what it sounds like.
= It's a combination of two classes through multiple inheritance.
= Think back to interfaces for a moment.

= Consider a DataPrinter interface which allows us to derive
a class used to print either an array of string or List data
types...

// The following class is an example of an interface
class DataPrinter
{
public:
virtual void printData(string *,int)=0;
virtual void printData(List &)=0;
Y




What are Mix-Ins?
= Now, suppose you had to “derive” a class from
DataPrinter to do printing to cout.

= [t might be called CoutPrinter and looked like this:

class CoutPrinter : public DataPrinter
{
public:
void printData(string *,int);
void printData(List &);
Y
void CoutPrinter::printData(string *stringArray,int size)
{
cout << "ARRAY OUTPUT: " << endl;
for (int i=0; i<size; i++)
{

cout << i << ". " << stringArray[i] << endl;

What are Mix-Ins?

void CoutPrinter::printData(List &aList)

List::Node *aNode = alist.the_head;

int i= 0;

cout << "LIST OUTPUT:" << endl;

while (aNode)

{
cout << i << ", " << aNode->the_value << endl;
it+;
aNode = aNode->next;

Now, consider that you would like to define another class to
output to a dot matrix printer instead of cout.

You might call it DMDataPrinter.

The thing is, you already have a class for representing dot
matrix printers:

What are Mix-Ins?

class DotMatrixPrinter {
public:
DotMatrixPrinter () :port (™) {}
DotMatrixPrinter (string argPort) :port (argPort) {}
void setPort(string argPort);
string getPort();
bool openPort () ;
void closePort();
protected:
ofstream outStream;
private:
string port;

= You don’t want to duplicate the functionality in either of the
existing classes in DMDataPrinter.

= You need to derive DMDataPrinter from DataPrinter so
that all the virtual functionality we rely on with interfaces still
works.

What are Mix-Ins?

= You don’t want to duplicate the functionality of
DotMatrixPrinter which appears to take care of some of the
overhead involved in opening a connection to the printer .

= So, you make use of multiple inheritance to create a mix-in
of two existing classes, namely DotMatrixPrinter and
DataPrinter.

= The argument that perhaps our object hierarchy needs
rethinking is still somewhat valid, but not as strong.

= You see, DataPrinter is an interface.

= To try and incorporate it into the DotMatrixPrinter hierarchy
(which is probably derived from a generic “Printer” class in
the real world) doesn’t make sense because you would then
be forcing every printer to implement the printData method
(remember, it’s pure virtual).

= No, this is clearly a case for multiple inheritance:

What are Mix-Ins?

class DMDataPrinter : public DataPrinter, public DotMatrixPrinter

public:
void printData (MyString *,int);
void printData(List &);

= Since this class is derived from DotMatrixPrinter as
well, the printData member function can be implemented
like this:

What are Mix-Ins?

void DMDataPrinter::printData(MyString *anArray,int size)

if (openPort())

outStream << "ARRAY OUTPUT: " << endl;
for (int i=0; i<size; i++)
{
outStream << i << ". " << anArray[i] << endl;
}

closePort();

= Let's see this work...




* Demonstration #1

Simple Multiple Inheritance

More About Multiple Inheritance
= Multiple base classes may share member function names, but...
= The following code will generate a compiler error:

class A {
public:
void printSomething() { cout << "Something from A" << endl;}
Y
class B {
public:
void printSomething() { cout << "Something from B" << endl;}
Y
class C : public A, public B {
Y
main ()
{
C c;
c.printSomething () ;
Yi

More About Multiple Inheritance
= This code is OK...

class A {

public:
void printSomething() { cout << "Something from A" << endl;}
Y
class B {
public:
void printSomething() { cout << "Something from B" << endl;}
Y
class C : public A, public B {
public:
void printSomething() { A::printSomething(); }
Y
main() {
C c;
c.printSomething () ;
c.B::printSomething(); // That looks weird!
b

More About Multiple Inheritance
= Earlier we talked about additions to our old friends, the Student
and Instructor classes.

= They were both derived from Person.

= We added Employee and showed how we could derive
Instructor from both Person and Employee.

= That was our example of multiple inheritance.

= For another example, consider a hierarchy of “meals”

= Assume we have a base class called meal.

= Next we have three derived classes, breakfast, lunch and
dinner.

= But, there’s this meal called brunch.

It's really a kind of breakfast and a kind of lunch, so we use

multiple inheritance to derive brunch from breakfast and
lunch.

Graphically, that might look like this:

More About Multiple Inheritance

There is an interesting problem/side effect here!

* Demonstration #2

Our Hierarchy of Meals




More About Multiple Inheritance

Breakfast Lunch

= There are actually two instances of Meal present in an
instance of Brunch!

More About Multiple Inheritance

= Since Breakfast and Lunch are both derived from Meal,

using multiple inheritance to derive Brunch from Breakfast

and Lunch causes duplication in the Meal base class.

This leads to ambiguous access errors when attempting to

access Meal from Brunch.

= We can fix these problems with explicit references to which
version of Meal we want.

= We do this by explicitly referencing the appropriate class

derived from Meal (Breakfast or Lunch)

This fixes the compile time problem(s)...

k.

* Demonstration #3

Our Next Hierarchy of Meals

Virtual Base Classes
= OK, so now it works. But is it what we want?

= In general, probably not.

= You can avoid this sub-object duplication by making any
classes which derive directly from Meal derive it virtually.

= Virtual again?

class Breakfast : virtual public Meal

{
Vi
class Lunch : virtual public Meal

{

b

Virtual Base Classes

= In defining our classes this way we eliminate duplication if we
derive through both of these classes via multiple inheritance later.

= But that means we have to know that we will be deriving from both
of these classes via multiple inheritance later!

= One major point in the argument for multiple inheritance was that
you would be more likely to use multiple inheritance for classes
which already existed, that is, to create “mix-ins”.

= Butin order to utilize virtual base classes the two classes you

might be inheriting from must have inherited from a common base

class virtually.

If you didn’t write them as part of your current design effort, the

programmer of those classes must have had foresight to realize

that virtual base classes were appropriate.

= Our picture now looks like this:

More about Multiple Inheritance

= And now we can go back to our original code...




Mration #4

Our Best Hierarchy of Meals

Ambiguity
= Last time we talked about ambiguous access when two base
classes implement the same member function.
= What follows is an interesting twist where a virtual base class
is involved as well (from LNG):

class B {
public:
virtual void £() { cout << “She loves me!!!!” << endl; }

class DI : virtual public B {
public:
void g() { £0; }

class D2 : virtual public B {
public:

void f() { cout << “She loves me not” << endl; }

class DD: public D1, public D2 { };

Ambiguity
int main()
{
DD me;
me.g();
return 0;
}
OUTPUT:
She loves me not

= You see, this really isn’t a case of ambiguity.

= Dl::g() isdefinedtocallB::£f()

= B::f() is a virtual function in a virtual base class

= Since D2::£ () is derived from the same instance of B (via
the virtual base class mechanism), D2: : £ () ends up
getting called.

= Ifme.g() was defined to call B: : £ () instead of just £(),
we’d see the other output!

3 Lecture 21

Final Thoughts




