
1

Lecture 21

Multiple Inheritance

What is Multiple Inheritance?
n We defined inheritance earlier in the semester as a

relationship between classes.

n If class C inherits from class B it is normally the case that C is
a B or that C is a kind of B.

n But what happens when we discover that C is a kind of B and
C is also a kind of D?

n For example, remember our Student and Instructor
classes? They both were derived from Person.

n But let’s throw another class into the mix: Employee
n An Instructor is certainly a kind of Employee, but an
Instructor is also a kind of Person.

n This seems like a possible candidate for multiple inheritance!

What is Multiple Inheritance?
n In C++ code, multiple inheritance looks just like single

inheritance, except there are “multiple” base classes
specified.

n They are separated by commas.

n They may individually be declared as public, private or
protected.

n If a given class is not declared as being of type public, private
or protected, the default is private.

n Inherited member variables are accessible according to the
rules of single inheritance.

class Instructor : public Person, public Employee

{

…

};

Arguing about it…
n One can argue that multiple inheritance shouldn’t be

necessary if you’ve defined your class hierarchy properly.

n As a matter of fact, most books don’t cover it.

n Since every Employee really is a Person, should we be able
to do this?

class Employee : public Person

{

…

};

class Instructor : public Employee

{

…

};

class Student : public Person

{

…

};

Arguing about it…
n Well, certainly you can. Remember, this is C++. You can do

just about anything you want to!

n Here’s another wrench in the puzzle…

n What happens when a Student is an Employee as well?

n You still wouldn’t derive every Student from Employee
either through single or multiple inheritance.

n What it might suggest is that you need to re-think your object
hierarchy before starting to code.

n This is usually the point of view of those who don’t believe in
multiple inheritance.

n We won’t settle the argument here.

n We will concentrate on the other side of the argument, which
was that sometimes you need to derive from two pre-existing
classes. It’s called a “mix-in”.

What are Mix-Ins?
n A mix-in is really just what it sounds like.

n It’s a combination of two classes through multiple inheritance.

n Think back to interfaces for a moment.

n Consider a DataPrinter interface which allows us to derive
a class used to print either an array of string or List data
types…

// The following class is an example of an interface

class DataPrinter

{

public:

 virtual void printData(string *,int)=0;

 virtual void printData(List &)=0;

};

2

What are Mix-Ins?
n Now, suppose you had to “derive” a class from
DataPrinter to do printing to cout.

n It might be called CoutPrinter and looked like this:

class CoutPrinter : public DataPrinter

{

public:

 void printData(string *,int);

 void printData(List &);

};

void CoutPrinter::printData(string *stringArray,int size)

{

 cout << "ARRAY OUTPUT: " << endl;

 for (int i=0; i<size; i++)

 {

 cout << i << ". " << stringArray[i] << endl;

 }

}

What are Mix-Ins?

n Now, consider that you would like to define another class to
output to a dot matrix printer instead of cout.

n You might call it DMDataPrinter.

n The thing is, you already have a class for representing dot
matrix printers:

void CoutPrinter::printData(List &aList)

{

 List::Node *aNode = aList.the_head;

 int i= 0;

 cout << "LIST OUTPUT:" << endl;

 while (aNode)

 {

 cout << i << ". " << aNode->the_value << endl;

 i++;

 aNode = aNode->next;

 }

}

What are Mix-Ins?

n You don’t want to duplicate the functionality in either of the
existing classes in DMDataPrinter.

n You need to derive DMDataPrinter from DataPrinter so
that all the virtual functionality we rely on with interfaces still
works.

class DotMatrixPrinter {

public:

 DotMatrixPrinter():port(“”){}

 DotMatrixPrinter(string argPort):port(argPort){}

 void setPort(string argPort);

 string getPort();

 bool openPort();

 void closePort();

protected:

 ofstream outStream;

private:

 string port;

};

What are Mix-Ins?
n You don’t want to duplicate the functionality of

DotMatrixPrinter which appears to take care of some of the
overhead involved in opening a connection to the printer .

n So, you make use of multiple inheritance to create a mix-in
of two existing classes, namely DotMatrixPrinter and
DataPrinter.

n The argument that perhaps our object hierarchy needs
rethinking is still somewhat valid, but not as strong.

n You see, DataPrinter is an interface.

n To try and incorporate it into the DotMatrixPrinter hierarchy
(which is probably derived from a generic “Printer” class in
the real world) doesn’t make sense because you would then
be forcing every printer to implement the printData method
(remember, it’s pure virtual).

n No, this is clearly a case for multiple inheritance:

What are Mix-Ins?

n Since this class is derived from DotMatrixPrinter as
well, the printData member function can be implemented
like this:

class DMDataPrinter : public DataPrinter, public DotMatrixPrinter

{

public:

 void printData(MyString *,int);

 void printData(List &);

};

What are Mix-Ins?

n Let’s see this work...

void DMDataPrinter::printData(MyString *anArray,int size)

{

 if (openPort())

 {

 outStream << "ARRAY OUTPUT: " << endl;

 for (int i=0; i<size; i++)

 {

 outStream << i << ". " << anArray[i] << endl;

 }

 closePort();

 }
}

3

Demonstration #1

Simple Multiple Inheritance

More About Multiple Inheritance
n Multiple base classes may share member function names, but...

n The following code will generate a compiler error:

class A {

public:

 void printSomething() { cout << "Something from A" << endl;}

};

class B {

public:

 void printSomething() { cout << "Something from B" << endl;}

};

class C : public A, public B {

};

main()

{

 C c;

 c.printSomething();

};

More About Multiple Inheritance
n This code is OK...
class A {

public:

 void printSomething() { cout << "Something from A" << endl;}

};

class B {

public:

 void printSomething() { cout << "Something from B" << endl;}

};

class C : public A, public B {

public:

 void printSomething() { A::printSomething(); }

};

main() {

 C c;

 c.printSomething();

 c.B::printSomething(); // That looks weird!

};

More About Multiple Inheritance
n Earlier we talked about additions to our old friends, the Student

and Instructor classes.

n They were both derived from Person.

n We added Employee and showed how we could derive
Instructor from both Person and Employee.

n That was our example of multiple inheritance.

n For another example, consider a hierarchy of “meals”

n Assume we have a base class called meal.

n Next we have three derived classes, breakfast, lunch and
dinner.

n But, there’s this meal called brunch.

n It’s really a kind of breakfast and a kind of lunch, so we use
multiple inheritance to derive brunch from breakfast and
lunch.

n Graphically, that might look like this:

More About Multiple Inheritance

Meal

Breakfast Lunch

Brunch

Meal

There is an interesting problem/side effect here!

Demonstration #2

Our Hierarchy of Meals

4

More About Multiple Inheritance

Meal

Breakfast Lunch

Brunch

Meal

n There are actually two instances of Meal present in an
instance of Brunch!

More About Multiple Inheritance
n Since Breakfast and Lunch are both derived from Meal,

using multiple inheritance to derive Brunch from Breakfast
and Lunch causes duplication in the Meal base class.

n This leads to ambiguous access errors when attempting to
access Meal from Brunch.

n We can fix these problems with explicit references to which
version of Meal we want.

n We do this by explicitly referencing the appropriate class
derived from Meal (Breakfast or Lunch)

n This fixes the compile time problem(s)...

Demonstration #3

Our Next Hierarchy of Meals

Virtual Base Classes
n OK, so now it works. But is it what we want?

n In general, probably not.

n You can avoid this sub-object duplication by making any
classes which derive directly from Meal derive it virtually.

n Virtual again?

class Breakfast : virtual public Meal

{

…

};

class Lunch : virtual public Meal

{

…

};

Virtual Base Classes

n In defining our classes this way we eliminate duplication if we
derive through both of these classes via multiple inheritance later.

n But that means we have to know that we will be deriving from both
of these classes via multiple inheritance later!

n One major point in the argument for multiple inheritance was that
you would be more likely to use multiple inheritance for classes
which already existed, that is, to create “mix-ins”.

n But in order to utilize virtual base classes the two classes you
might be inheriting from must have inherited from a common base
class virtually.

n If you didn’t write them as part of your current design effort, the
programmer of those classes must have had foresight to realize
that virtual base classes were appropriate.

n Our picture now looks like this:

More about Multiple Inheritance

Breakfast Lunch

Brunch

n And now we can go back to our original code...

Meal

5

Demonstration #4

Our Best Hierarchy of Meals

Ambiguity
n Last time we talked about ambiguous access when two base

classes implement the same member function.

n What follows is an interesting twist where a virtual base class
is involved as well (from LNG):

class B {

public:

 virtual void f() { cout << “She loves me!!!!” << endl; }

};

class D1 : virtual public B {

public:

 void g() { f(); }

};

class D2 : virtual public B {

public:

 void f() { cout << “She loves me not” << endl; }

}

class DD: public D1, public D2 { };

Ambiguity

n You see, this really isn’t a case of ambiguity.

n D1::g() is defined to call B::f()
n B::f() is a virtual function in a virtual base class

n Since D2::f() is derived from the same instance of B (via
the virtual base class mechanism), D2::f() ends up
getting called.

n If me.g() was defined to call B::f() instead of just f(),
we’d see the other output!

int main()

{

 DD me;

 me.g();

 return 0;

}

OUTPUT:

She loves me not

Lecture 21

Final Thoughts

