Lecture 19

Miscellaneous Topics Il

Overloading the Assignment Operator
= In lectures past, we've talked about copy constructors

= Called when a new object is created and set equal to an existing
instance

= What's the difference between the following lines of code?

Coursee c¢s213_fa0l,cs213_sp01;

// What’s the difference between the following two
// lines of code?

Course temp = cs213_sp01;

Cs213_fa0l = cs213_sp01;

= The first assignment involves a copy constructor since a new
object is being created.

= The second is straight assignment to an existing variable, so
no copy constructor is involved.

Overloading the Assignment Operator

= Remember, C++ will define a default and naive copy
constructor for you if you don’t provide one.

= It will just copy member variables (potential for dangling
pointers)

= In the case of Course, we’'d need to override the default
copy constructor to make sure the storage was copied
properly.

Course: :Course (Course &aCopy)
{
// Copy storage into new instance if necessary...

}

= Again, this will take care of the case where someone tries to
assign to a Course variable when it is declared:
= Course newCourse = anotherCourse;

Overloading the Assignment Operator
= However, when we need to handle the case where an existing
variable is assigned a new value via the assignment operator, we
overload the assignment operator:

= The = operator is another special case binary operator...

Course &Course::operator=(Course &argCourse)

{
// Assume we have a member function called duplicate ()
// which copies values from the Course passed in into
// our instance.
duplicate (argCourse) ;
return *this; // Huh?

}

= Remember that when overloading the = operator you are going to
be assigning to an existing instance. If that instance has
dynamically allocated data it should be freed.

= We return a reference so thatcl = c2 = c3 works...

Overloading the Assignment Operator
= Oh, yeah... we should always make sure that our source and
destinations aren’t the same..

= We do this by adding the following code:

Course &Course::operator=(Course &argCourse)
{
// Make sure we actually have two different pointers
if (this != &argCourse)
duplicate (argCourse) ;
return *this; // Huh?

= Whatis “this”, anyway?
= This is a pointer to the current instance of the class we are in.

Demonstration #1

Overloading the Assignment
Operator

More About Types
= Do you know how to write a type name?

= There is a simple convention for writing a type name...

= Start with a variable declaration of the desired type, then
remove the variable...

int k; // Type is really just “int”

int *k; // Type is really just (int *)

int k[]; // Type is really just (int [])
// Type is really just (int *)[]

int *k[]
)

int (*k)[] // Type is really just (int []) *

Remember, the asterisk binds tighter than the square brackets
Another way to “define” our own user types is through the
typedef keyword.

This is a way of creating more of a “shorthand” for existing
types rather than actually defining a new type.

typedef
A typedef allows to create a new name for a more complex type.

The general format of the statement is
= typedef <type> <typeName>
Consider how we might typedef a pointer to integer:

typedef int *intPtr;
main ()
{

intPtr iPtr = new int();

After the typedef we can use intPtr as a “built in” type.

Notice we don’t need to use an asterisk to denote that iPtr is a
pointer.

It's built right into the type definition

typedef

When using typedef to define a shorthand for some array
type, place the right brackets just to the right of the name
chosen for the new type.

Consider a new type called string255 which is an array of
255 characters (well, plus 1 to account for the NULL byte)

// Define a type to represent C style strings of 255

// characters (or less). Leave an extra byte for the
NULL

// terminating byte.

typedef char String255([256];

Again, this defines a new type named String255 which
is an array of 256 characters.

You may also use previously typedef’d types in other
typedef statements...

typedef

= Consider a new type named StringArray which defines an
array of Str255 types:

= [t could either be defined as a pointer or as an array itself

// Define a type to represent C style strings of 255

// characters (or less). Leave an extra byte for the NULL
// terminating byte.

typedef String255 *StringArray; // arbitrary size
typedef String255 StringArrayl5[15]; // 15 String255’s

= OK, let’s take a look at some of this in action...

Demonstration #2

Typedef

Type Equivalence

= [f two types are equivalent they can be assigned to each
other without needing to have a specially overloaded
assignment operator.

= Two types are equivalent if they have the same name
= Remember, typedefs don’t define new types, just provide shortcuts

typedef Student *StudentPtr;

typedef Student *UndergradPtr;

// Both StudentPtr and UndergradPtr are equivalent.
StudentPtr oneStudent;

UndergradPtr anotherStudent = new UndergradPtr();

oneStudent = anotherStudent; // this is legal because they
// are type equivalent

Sizeof operator
= The size (in bytes) that any data type takes up may be
retrieved by the user by calling the sizeof function.
= In C++, this information is really only useful if you are
writing an alternative to new.

int main()

{
cout << “sizeof (int) is “ << sizeof(int) << endl;
cout << “sizeof (float) is “ << sizeof (float) << endl;

cout << “sizeof (Course) is “ << sizeof (Course) << endl;

return 0;

}

= For some structures/classes sizeof() might return a value
larger than the sum of all fields in question (padding).

Type Conversions
= Early on we touched on the issue of type conversions.
= When assigning between two different types (especially numeric)
C++ will do it's best to implicitly convert between the type you are
assigning from to the type you are assigning to.

int main()
{
int n = -7;
unsigned int u = n;
int m = INT_MAX; // INT_MAX is largest possible int
float fm = m;
int pi = 3.142;

cout << “n = " << n << %, u =" << u << endl <<
"m =" <<m <<V, fm = " << fm << endl <<
Ypi = " << pi << endl;

Demonstration #3

Implicit Type Conversions
(Numeric)

Type Conversions
= What about non-numeric types?

= Well you can convert between pointers and integers and
between pointers to different types...
= But you need to typecast them, like this:

int main()

{
Control *ctrll = new PopupMenu(5,5,100,20,”My Menu”);
PopupMenu *pm;

pm = ctrll; // No, the compiler won’t let you do this!
pm = (PopupMenu *) ctrll; // But this is ok...
}

= A typecast is written as follows:
. (typename) expression

Type Conversions
= But why does a type cast make it “suddenly legal” to

assign between types?

= C++ makes the assumption (perhaps naively) that the
programmer knows what he or she is doing! :-)

= | could have just as easily (and erroneously) done the
following:

int main()

{
Control *ctrll = new PopupMenu(5,5,100,20,”My Menu”);
PopupMenu *pm;
int arbitraryInt = 345345;

pm = ctrll; // No, the compiler won’t let you do this!
pm = (PopupMenu *) arbitraryInt; // But this is ok 222?
pm->setNumItems (5) ; // YIKES!!!tiirtl

Type Conversions
= Typecasting can be a powerful tool, especially when
dealing with derived classes needing to be accessed from
a base class pointer.

= Consider the following pseudo-code...

// The following is pseudo-code, it is not complete...
int main()
{

MenuObject *itemList[50]

itemList[0] = new MenuItem(..); // Assume constructors

itemList[1l] = new SubMenu(..);

// Now, typecast our way to the derived classes
((Menultem *) itemList[0])->setCmd(..);
((SubMenu *) itemList[1l])->appendItem/(..);

Type Conversions
= The moral of the story is to be very, very careful with
typecasting

= Essentially, it overrides the compiler’s type checking
mechanism

= So you can do some pretty bizarre things
= But, used responsibly, you can do useful things as well.

= Did you know that you can define what it means to
typecast an instance/reference to a class you've defined?

= Consider the following code...

int main()
{
INT myInt (4);
int x = myInt // Compiler won’t like this!

Type Conversions

= We could just use the INT: :getValue() to make the

compiler happy, but there’s a better way.

= We can overload the (int) typecast in INT...

INT::operator int() const

{

}

return value;

= Now, the following code will compile:

int main()

{

INT myInt (4);
int x = myInt // Now, compiler is happy!

Private Inheritance

= When looking at inheritance, we've always used a declaration

of the following form:

class X : public Y
{

}i

= |'ve asked you to take it on faith that public Y is simply
the syntax you must use to say that the class X is derived
from class v.

= Now, consider the following partial definitions of X and Y...

Private Inheritance

class Y

{

public:

int a,b;

protected:

}i

int c,d;

class X : public Y

{

public:

}i

int h,i;

As we’ve gone over before, a member function in class X has
access to member variables a,b,c,d, h, i from the base class Y.
When working with X outside of the class, a,b,h, i are
accessible.

Private Inheritance
class Y
{
public:
int a,b;
protected:
int c,d;
}i

class X : private Y
{
public:

// Notice the change to private

int h,i;
i

= But, it we make use of private inheritance, the public (and
protected) members of the base class become private
members of the derived class.

Private Inheritance

That is to say that no members from a privately inherited
base class may be accessed from outside the scope of the
derived class.

It also means that the relationship X is a Y or X is a kind of
Y doesn’t really hold up here.

Why? Because if a Y has certain public methods and X is
a 'y, then X should have the same public methods.

With private inheritance this is not the case, as the public
methods in Y are not public methods in X.

So, then, what is private inheritance good for?

LNG suggests the following (from pg. 231):

= This is what private inheritance is for. If A is to be implemented as
a B, and if class B has virtual functions that A can usefully override,
make A a private base class of B.

Is this really useful? Wait... before you decide...

Private Inheritance

A pointer to a class derived privately from a base class may
not be assigned directly to a pointer to the base class.

X x; // declare an instance of the class X
Y *yPtr; // pointer to an instance of base class
yPtr = &x; // COMPILER ERROR. access violation

Ouch! We've been able to do this before but now the compiler
won't let us :~(.
Oh, wait, this is C++, it will let me do almost anything with a little

“coercion”

X x; // declare an instance of the class X

Y *yPtr; // pointer to an instance of base class
yPtr = (Y *)&x; // Oh, ok, this is fine

Private Inheritance

class Y

{

public:
void doSomethingUseful (int); // arbitrary public member func
int a,b;

i

class X : private Y
{
public:
int h,i;
i

= Since doSomethingUseful() is a public member of Y, it is
not accessible outside of the scope of X. Thatis...

Privat)e Inheritance

int main(
{
X anX;

anX.doSomethingUseful (5) ; // access violation

return 0;

Attempting to access doSomethingUseful () from a variable of
class X is an access violation.

That's because dosomethingUseful () is a public method of a
privately inherited base class.

Bummer.

Oh, wait, this is C++... Can | coerce my way around this
restriction?

You betchal!

Private Inheritance

class Y

{

public:
void doSomethingUseful (int); // arbitrary public member func
int a,b;

i

class X : private Y

{

public:
Y::doSomethingUseful;
int h,i;

i

= Notice the bizarre syntax in the public section of Y.

= Itis termed the fully qualified name of the member function
doSomethingUseful () defined in class Y.

Private Inheritance
int main ()

{
X anX;

anX.doSomethingUseful (5) ; // now this is ok

return 0;

= The addition of the line Y: :doSomethingUseful; into the

public section of the class definition of X solved our problem.

Notice that only the name of the member function from the
base class to be made public is used, there is no parameter
list.

= So, back to my original question... Is it useful?

= Let’s see it in action first...

Demonstration #4

Private Inheritance

Private Inheritance--Is it useful?
Well, put a feature in a language and someone will find a way to use
it!
In my programming travels | have never seen it used.
It's not for doing straight inheritance, because the relationships
break down.
It's not for doing interfaces since the pure virtual approach is much
cleaner, simpler, and enforces the implementation of all members.
The example given in the books shows a case where a generic base
class is used to provide functionality to a more specific derived
class.
= the derived class is, conceptually, different from the base class
= List vs. Stack
= Many of the features of the base class might not be applicable to the derived
class.
= Removing the nth element of a list is not a stack-like function.
= In this case, private inheritance may be appropriate.

Lecture 19

Final Thoughts

