
1

Lecture 19

Miscellaneous Topics III

Overloading the Assignment Operator
n In lectures past, we’ve talked about copy constructors

n Called when a new object is created and set equal to an existing
instance

n What’s the difference between the following lines of code?

Coursee cs213_fa01,cs213_sp01;

…

// What’s the difference between the following two

// lines of code?

Course temp = cs213_sp01;

Cs213_fa01 = cs213_sp01;

n The first assignment involves a copy constructor since a new
object is being created.

n The second is straight assignment to an existing variable, so
no copy constructor is involved.

Overloading the Assignment Operator
n Remember, C++ will define a default and naïve copy

constructor for you if you don’t provide one.

n It will just copy member variables (potential for dangling
pointers)

n In the case of Course, we’d need to override the default
copy constructor to make sure the storage was copied
properly.

Course::Course(Course &aCopy)

{

 // Copy storage into new instance if necessary...

}

n Again, this will take care of the case where someone tries to
assign to a Course variable when it is declared:
n Course newCourse = anotherCourse;

Overloading the Assignment Operator
n However, when we need to handle the case where an existing

variable is assigned a new value via the assignment operator, we
overload the assignment operator:

n The = operator is another special case binary operator...

Course &Course::operator=(Course &argCourse)

{

 // Assume we have a member function called duplicate()

 // which copies values from the Course passed in into

 // our instance.

 duplicate(argCourse);

 return *this; // Huh?

}

n Remember that when overloading the = operator you are going to
be assigning to an existing instance. If that instance has
dynamically allocated data it should be freed.

n We return a reference so that c1 = c2 = c3 works...

Overloading the Assignment Operator
n Oh, yeah… we should always make sure that our source and

destinations aren’t the same..

n We do this by adding the following code:

n What is “this”, anyway?

n This is a pointer to the current instance of the class we are in.

Course &Course::operator=(Course &argCourse)

{

 // Make sure we actually have two different pointers

 if (this != &argCourse)

 duplicate(argCourse);

 return *this; // Huh?

}

Demonstration #1

Overloading the Assignment
Operator

2

More About Types
n Do you know how to write a type name?

n There is a simple convention for writing a type name…

n Start with a variable declaration of the desired type, then
remove the variable...

int k; // Type is really just “int”

int *k; // Type is really just (int *)

int k[]; // Type is really just (int [])

int *k[]; // Type is really just (int *)[]

int (*k)[] // Type is really just (int []) *

n Remember, the asterisk binds tighter than the square brackets

n Another way to “define” our own user types is through the
typedef keyword.

n This is a way of creating more of a “shorthand” for existing
types rather than actually defining a new type.

typedef
n A typedef allows to create a new name for a more complex type.

n The general format of the statement is

n typedef <type> <typeName>

n Consider how we might typedef a pointer to integer:

typedef int *intPtr;

main()

{

 intPtr iPtr = new int();

}

n After the typedef we can use intPtr as a “built in” type.

n Notice we don’t need to use an asterisk to denote that iPtr is a
pointer.

n It’s built right into the type definition

typedef
n When using typedef to define a shorthand for some array

type, place the right brackets just to the right of the name
chosen for the new type.

n Consider a new type called String255 which is an array of
255 characters (well, plus 1 to account for the NULL byte)

n // Define a type to represent C style strings of 255

n // characters (or less). Leave an extra byte for the
NULL

n // terminating byte.

n typedef char String255[256];

n Again, this defines a new type named String255 which
is an array of 256 characters.

n You may also use previously typedef’d types in other
typedef statements...

typedef

n Consider a new type named StringArray which defines an
array of Str255 types:

n It could either be defined as a pointer or as an array itself

// Define a type to represent C style strings of 255

// characters (or less). Leave an extra byte for the NULL

// terminating byte.

typedef String255 *StringArray; // arbitrary size

typedef String255 StringArray15[15]; // 15 String255’s

n OK, let’s take a look at some of this in action...

Demonstration #2

Typedef

Type Equivalence
n If two types are equivalent they can be assigned to each

other without needing to have a specially overloaded
assignment operator.

n Two types are equivalent if they have the same name
n Remember, typedefs don’t define new types, just provide shortcuts

typedef Student *StudentPtr;

typedef Student *UndergradPtr;

// Both StudentPtr and UndergradPtr are equivalent.

StudentPtr oneStudent;

UndergradPtr anotherStudent = new UndergradPtr();

oneStudent = anotherStudent; // this is legal because they

 // are type equivalent

3

Sizeof operator
n The size (in bytes) that any data type takes up may be

retrieved by the user by calling the sizeof function.

n In C++, this information is really only useful if you are
writing an alternative to new.

int main()

{

 cout << “sizeof(int) is “ << sizeof(int) << endl;

 cout << “sizeof(float) is “ << sizeof(float) << endl;

 cout << “sizeof(Course) is “ << sizeof(Course) << endl;

 return 0;

}

n For some structures/classes sizeof() might return a value
larger than the sum of all fields in question (padding).

Type Conversions
n Early on we touched on the issue of type conversions.

n When assigning between two different types (especially numeric)
C++ will do it’s best to implicitly convert between the type you are
assigning from to the type you are assigning to.

int main()

{

 int n = -7;

 unsigned int u = n;

 int m = INT_MAX; // INT_MAX is largest possible int

 float fm = m;

 int pi = 3.142;

 cout << “n = “ << n << “, u = “ << u << endl <<

 “m = “ << m << “, fm = “ << fm << endl <<

 “pi = “ << pi << endl;

}

Demonstration #3

Implicit Type Conversions
(Numeric)

Type Conversions
n What about non-numeric types?

n Well you can convert between pointers and integers and
between pointers to different types…

n But you need to typecast them, like this:

int main()

{

 Control *ctrl1 = new PopupMenu(5,5,100,20,”My Menu”);

 PopupMenu *pm;

 pm = ctrl1; // No, the compiler won’t let you do this!

 pm = (PopupMenu *) ctrl1; // But this is ok...

}

n A typecast is written as follows:
n (typename) expression

Type Conversions
n But why does a type cast make it “suddenly legal” to

assign between types?

n C++ makes the assumption (perhaps naïvely) that the
programmer knows what he or she is doing! :-)

n I could have just as easily (and erroneously) done the
following:

int main()

{

 Control *ctrl1 = new PopupMenu(5,5,100,20,”My Menu”);

 PopupMenu *pm;

 int arbitraryInt = 345345;

 pm = ctrl1; // No, the compiler won’t let you do this!

 pm = (PopupMenu *) arbitraryInt; // But this is ok ????

 pm->setNumItems(5); // YIKES!!!!!!!!

}

Type Conversions
n Typecasting can be a powerful tool, especially when

dealing with derived classes needing to be accessed from
a base class pointer.

n Consider the following pseudo-code...

// The following is pseudo-code, it is not complete...

int main()

{

 MenuObject *itemList[50]

 itemList[0] = new MenuItem(…); // Assume constructors

 itemList[1] = new SubMenu(…);

 // Now, typecast our way to the derived classes

 ((MenuItem *) itemList[0])->setCmd(…);

 ((SubMenu *) itemList[1])->appendItem(…);

}

4

Type Conversions
n The moral of the story is to be very, very careful with

typecasting

n Essentially, it overrides the compiler’s type checking
mechanism

n So you can do some pretty bizarre things

n But, used responsibly, you can do useful things as well.

n Did you know that you can define what it means to
typecast an instance/reference to a class you’ve defined?

n Consider the following code...

int main()

{

 INT myInt(4);

 int x = myInt // Compiler won’t like this!

}

Type Conversions
n We could just use the INT::getValue() to make the

compiler happy, but there’s a better way.

n We can overload the (int) typecast in INT...

INT::operator int() const

{
 return value;

}

n Now, the following code will compile:

int main()

{

 INT myInt(4);

 int x = myInt // Now, compiler is happy!

}

Private Inheritance
n When looking at inheritance, we’ve always used a declaration

of the following form:

class X : public Y

{

…

};

n I’ve asked you to take it on faith that public Y is simply
the syntax you must use to say that the class X is derived
from class Y.

n Now, consider the following partial definitions of X and Y...

Private Inheritance
class Y

{

public:

 int a,b;

protected:

 int c,d;

};

class X : public Y

{

public:

 int h,i;

};

n As we’ve gone over before, a member function in class X has
access to member variables a,b,c,d,h,i from the base class Y.

n When working with X outside of the class, a,b,h,i are
accessible.

Private Inheritance
class Y

{

public:

 int a,b;

protected:

 int c,d;

};

class X : private Y // Notice the change to private

{

public:

 int h,i;

};

n But, it we make use of private inheritance, the public (and
protected) members of the base class become private
members of the derived class.

Private Inheritance
n That is to say that no members from a privately inherited

base class may be accessed from outside the scope of the
derived class.

n It also means that the relationship X is a Y or X is a kind of
Y doesn’t really hold up here.

n Why? Because if a Y has certain public methods and X is
a Y, then X should have the same public methods.

n With private inheritance this is not the case, as the public
methods in Y are not public methods in X.

n So, then, what is private inheritance good for?

n LNG suggests the following (from pg. 231):
n This is what private inheritance is for. If A is to be implemented as

a B, and if class B has virtual functions that A can usefully override,
make A a private base class of B.

n Is this really useful? Wait… before you decide...

5

Private Inheritance
n A pointer to a class derived privately from a base class may

not be assigned directly to a pointer to the base class.

 X x; // declare an instance of the class X

 Y *yPtr; // pointer to an instance of base class

 yPtr = &x; // COMPILER ERROR. access violation

n Ouch! We’ve been able to do this before but now the compiler
won’t let us :-(.

n Oh, wait, this is C++, it will let me do almost anything with a little
“coercion”

 X x; // declare an instance of the class X

 Y *yPtr; // pointer to an instance of base class

 yPtr = (Y *)&x; // Oh, ok, this is fine

Private Inheritance
class Y

{

public:

 void doSomethingUseful(int); // arbitrary public member func

 int a,b;

};

class X : private Y

{

public:

 int h,i;

};

n Since doSomethingUseful() is a public member of Y, it is
not accessible outside of the scope of X. That is...

Private Inheritance
int main()

{

 X anX;

 anX.doSomethingUseful(5); // access violation

 return 0;

}

n Attempting to access doSomethingUseful() from a variable of
class X is an access violation.

n That’s because doSomethingUseful() is a public method of a
privately inherited base class.

n Bummer.

n Oh, wait, this is C++… Can I coerce my way around this
restriction?

n You betcha!

Private Inheritance
class Y

{

public:

 void doSomethingUseful(int); // arbitrary public member func

 int a,b;

};

class X : private Y

{

public:

 Y::doSomethingUseful;

 int h,i;

};

n Notice the bizarre syntax in the public section of Y.

n It is termed the fully qualified name of the member function
doSomethingUseful() defined in class Y.

Private Inheritance
int main()

{

 X anX;

 anX.doSomethingUseful(5); // now this is ok

 return 0;

}

n The addition of the line Y::doSomethingUseful; into the
public section of the class definition of X solved our problem.

n Notice that only the name of the member function from the
base class to be made public is used, there is no parameter
list.

n So, back to my original question… Is it useful?

n Let’s see it in action first...

Demonstration #4

Private Inheritance

6

Private Inheritance--Is it useful?
n Well, put a feature in a language and someone will find a way to use

it!

n In my programming travels I have never seen it used.

n It’s not for doing straight inheritance, because the relationships
break down.

n It’s not for doing interfaces since the pure virtual approach is much
cleaner, simpler, and enforces the implementation of all members.

n The example given in the books shows a case where a generic base
class is used to provide functionality to a more specific derived
class.
n the derived class is, conceptually, different from the base class

n List vs. Stack

n Many of the features of the base class might not be applicable to the derived
class.

n Removing the nth element of a list is not a stack-like function.

n In this case, private inheritance may be appropriate.

Lecture 19

Final Thoughts

