
1

Lecture 14

Miscellaneous Topics II:

Enuerations, Pointers to Functions

(& Prelim Review)

Enumerations
n Sometimes, when programming, we need to deal with a

limited range of constants:
n A finite set of colors

n Result codes

n It is useful to define a set of constants which can be used in
place of the actual integer values:
n increases readability of code

n protects you against integer values changing

n We can do this with constants

// Define error codes

const short cNoError = 0;

const short cBadArg = 1;

const short cBadResult = 2;

const short cUnknownErr = 3;

Enumerations
n This is fine, but it means that all functions which deal with

these errors simply return (or take as arguments) a short
type.

n If we used an enumeration, we can define a new data type as
well as defining constant names.

n The syntax would look like this:

// Define error codes

enum RonsError

{

 cNoError = 0, // Values are optional, default is 0

 cBadArg, // If a value is not present,

 cBadResult, // assign previous value + 1

 cUnknownErr

};

Enumerations
n Consider the following:

enum RonsError

{

 cNoError = 0, // Values are optional, default initial

 cBadArg, // value is 0

 cBadResult, // If a value is not present,

 cUnknownErr // assign previous value + 1

};

int main()

{

 RonsError rerr = RonsFunction(); // An arbitrary function

 if (rerr != cNoError)

 cerr << “Ooooops, Error:“ << rerr << endl;

 else

 cout << “No error” << endl;

}

Enumerations
int main()

{

 RonsError rerr = RonsFunction(); // An arbitrary function

 if (rerr != cNoError)

 cerr << “Ooooops, Error:“ << rerr << endl;

 else

 cout << “No error” << endl;

}

n The variable rerr is not treated as an integer type.

n If I try to assign an integer value directly to it, I will get a
compile time error.

n Although I could use a cast to force a value into the
enumeration variable.

n This gives us some protection against accidentally assigning
raw integer values to a variable of type RonsError.

Demonstration #1

Enumerations

2

Pointers to Functions
n What is a pointer to a function?

n A pointer just like any other

n Data pointed at by the pointer is actually machine code for the
function pointed at.

n How is it declared?

// Define a pointer to a function

int (*f)(int start,int stop);

n This declares a variable f which is a pointer to a function that
returns an int and takes two ints as parameters.

n Now, just like any other pointer, the declaration does no
allocation.

n So, in this case, f points at nothing and any attempt to
dereference it will have very spectacular side effects!

n You cannot dynamically allocate memory for function
pointers.

Pointers to Functions
n You can only set pointer-to-function variables equal to

pointers to existing functions.

n How do you do that?

n Consider the following code:

int SimpleAdd(int arg1,int arg2)

{

 return arg1 + arg2;

}

int main()

{

 int (*f)(int start,int stop);

 f = SimpleAdd;

 // f now points at the function “SimpleAdd”

 // What can we do with it now?

}

Pointers to Functions
n We can call it!

n How do you call a function when you have a pointer to it?

n Consider the following:

int SimpleAdd(int arg1,int arg2)

{

 return arg1 + arg2;

}

int main()

{

 int (*f)(int start,int stop);

 f = SimpleAdd;

 int x = (*f)(3,4); // Call the function pointed at by f

 int y = f(3,4);

 cout << “x is : “ << x << endl;

}

Demonstration #1

Function Pointers

Pointers to Functions
n OK, interesting concept. But what use is it?

n Most frequently used to allow a programmer to pass a
function to another function.

n Suppose I am writing a function which contains variables
which need to be acted on.

n Suppose that I want to be able to have multiple ways to act on
those variables.

n A function pointer as a parameter is a good solution.

n Quick Case Study: The Project SALSA environment has
multiple layers:
n VCSAPI (server communication, file downloads)

n File Delivery Layer (versioning logic, GUI code)

n Runway (front end)

Pointers to Functions
n Whenever we download a file we want to provide a friendly

progress bar.

n The problem is that the file download actually happens in the
VCSAPI which has no GUI code in it at all!

n The solution is that the VCSAPI call which actually downloads
a file take a function pointer as a parameter :

typedef short (*VCSAPI_ProgressCallback)(short);

VCSAPI_Error VCSAPI_FileGet(VCSAPI_Server server,
 VCSAPI_FileRecord *fileRecPtr,
 VCSAPI_ProgressCallback prog,
 short callbackInterval,
 char *localPath,
 int *serverRC,char **serverMSG)

n The FDL (which manages all of the GUI code for versioning
dialogs, etc.) can pass a pointer to a function which updates a
graphical progress bar.

3

Lecture 14

Final Thoughts

