Lecture 13

Miscellaneous Topics |

Default Arguments
= Suppose we want to write a new global function that
searches for characters in a string.
= We want to be able to search for the first occurrence of a
specified character from a specified starting point in the
string.
= We might implement is as follows:

int findCharInString(string s,char c,int startPos)

{

// Search for the specified character
for (int k=startPos; k<s.length(); k++)
if (s[k] == ¢)
return k; // Found it! Return the index to the caller

// Didn’t find it, return -1;

return -1;

Default Arguments (cont)
= Now suppose we wanted to give the user the flexibility of not
having to specify the starting position:
= In most cases we're probably going to be starting from index 0
anyway
= We could add an additional global function which overloads
findCharInString(), like this:
int findCharInString(string s,char c)

{
// In this member function, we’re just going to call
// the *real* findCharInString() with 0 as the third arg:

return findCharInString(s,c,0);

Default Arguments (cont)
= | would probably place the declarations of findCharInString()
in a header file for easy inclusion in code that wants to use it.

//
// MyUtilities.h
//

int findCharInString(string s,char c);
int findCharInString(string s,char c,int startPos);

Default Arguments (cont)

= What we're really doing with findCharInString() is providing
two definitions, one of which uses a default value for one of
the parameters.

= However instead of going to the trouble of having two
functions defined, C++ gives us a way to specify a default
value for a parameter right in the declaration (but not the
definition):

//
// MyUtilities.h
//

int findCharInString(string s,char c,int startPos=0);

// MyUtilities.cpp
#include “MyUtilities.h”
int findCharInString(string s,char c,int startPos)

{7

Default Arguments (cont)
To have the compiler use the default value for a given argument |
simply omit that argument when calling the function.
This means that default arguments must come at the end of a
function declaration.
In other words, you cannot have an argument with a default value
specified appear before a regular argument (with no default specified)

int main()

{

string aStr = “This is a test”;

int pos = findCharInString(aStr, ‘s’);
cout << “the first s is at position: “ << pos << endl;
cout << “the next on is at “ <<

findCharInString(aStr, ‘s’,pos+l) << endl;

Demonstration #1

Using Default Arguments

Default Arguments (cont)

= Remember, parameters with default values need to appear at
the end of your parameter list.

= Once you choose to take the default value when calling a
function with default values in it, all subsequent parameters
must take the default as well.

int findCharInString(string s,char c,int start = 0);

(
int findCharInString(string s,char c,int start = 0, int stop); // 22?2
int findCharInString(string s,char c,int stop, int start = 0); // 22?2
int findCharInString(string s,char c,int start = 0, int stop = -1);

= Sometimes default arguments can be awkward:
= No clean way to specify a default value for stop (length of string)

We could omit the default value, but then we’d need to put stop
before start!

We resort to “flag passing” (-1 to mean we want to search until the
end of the string)

Default Arguments (cont)
= Let’s take a look at how that might be implemented:

int findCharInString(string s,char c,int startPos,

int stopPos)

// Determine what our stopping point is. Introducing
// some really weird notation...
int stopAt = (stopPos == -1) ? s.length()-1 : stopPos;

// Search for the specified character
for (int k=startPos; k<=stopAt; k++)
if (s[k] == ¢)
return k; // Found it! Return the index to the caller

// Didn’t find it, return -1;
return -1;

Default Arguments (cont)

According to LNG, a default value “can be any expression, it

needn’t be a constant. Note, though, that any variables

involved are statically bound, so be careful when using

default argument values with virtual functions.”

Stroustrup makes no reference to being able to specify a

default value with a variable.

= Savitch doesn’t really say.

= It would have been useful in our findCharInString()
function to pass s.length() as the default value for the
stopPos argument, but...

= You cannot use member variables or function calls(unless
they are static, but we haven'’t covered static members yet)

= You can use global variables

= Let’s look at our findCharInString modification.

Demonstration #2

Using Default Arguments
(and the stopPos flag)

void and void *
= A (void *) type is a pointer to anything.
= Thatis, you can assign any pointer to a variable of type
(void *).
= The reverse is not true however.

= You cannot assign a (void *) variable to a pointer variable
(except another (void =*)) without explicit type casting.

int main()
{
char *foo = “This is a test”; // Did you know this is legal?
void *somePtr;
somePtr = foo;
foo = (char *) somePtr;

}

= So why would you use a (void *) anyway?

void and void * (cont))
= In short, use a (void *) anytime you need to deal with a

pointer of any type.
= Usually, this is as a parameter to a function.

= Consider a hex dump function... A low level function to do a
hex dump should be able to take any pointer:

void hexDump (void *ptr, long size)
{
char *p = (char *)ptr;
for (int j=0; j<size; j+=16)
{
cout << hex << (unsigned long)p+j << “: %;
for (int k=9; k<j+16 && k<size; k++)
cout << hex << (unsigned char) p[k] << “ “;
cout << endl;

Returning References

= Remember, a reference is like a pointer (pointers are used to
implement references), so when you return a reference to an
object it’s like returning a pointer.

= Remember, too, that functions which return pointers usually
allocate the memory they return a pointer to. Otherwise the
potential for dangling pointers exists.

= Since you can’t dynamically allocate memory directly to a
reference (like you can for a pointer) you are more likely to
return pointers than references when performing this type of
work.

= So when is it a good idea to return a reference?

= Let's take a brief detour first.

A Simple Array Class
= Consider the following class used to implement an array

Class MyArray
{
public:
MyArray ()
{ for (int k=0; k<50; k++) internall[k]
int element (int k)
{ if ((k > 0) && (k<50)) return internal([k];
return 0;
}
int setValue (int k,int wval)
{ if ((k > 0) && (k<50)) internal(k] = val;}

07}

private:

int internal([50];

A Simple Array Class (cont)
= We could set and get values in this array like this:

void main ()

{
MyArray a;
a.setValue(0,55);
a.setValue(1,44);
a.setValue(2,43);

cout << “Element #1 is: “ << a.element(l) << endl;

Returning References (cont)

= MyArray::element() can be used to access an individual
elements.

= So, it's the only way to get items from the array.

= BUT, if we change our definition so that it returns a
reference...

= int &MyArray::element (int k)
=

if ((k >= 0) && (k < 50))
[l return internal [k];
=}

= There is an interesting side effect. We can now put a call to
this function on the left side of an assignment operator.

= That is, we can now make assignments to a given element
in our array using a call to this function...

Demonstration #3

MyArray::element as an I-value

Special Binary Operator Overloading

= | mentioned earlier that binary operators are (in general)overloaded
globally, not within a class.

= There is an exception.

= The [Joperator is considered a binary operator (pointer and index)

int &MyArray::operator[] (int k)
{

return element (k) ;
}

= So, now we can access characters in our strings like array
elements...

Mration #4

Overloading []

3 Lecture 13

Final Thoughts

