
1

Lecture 12

Destructors

“Absolute C++”

Chapters 10.3, 15.2

Destructors
n Quick review of constructors:

n They’re called when an object is created

n You may perform one-time initializations in constructors
n Memory allocation

n member variable initializations

n You may define multiple constructors
n Each may take a varying number of parameters

n If you do not define a constructor for a given class, C++ will define
one for you (that basically does nothing).

n Destructors are called whenever an object is destroyed (or
just before destruction)

n Destructors give you a place to:
n Free memory allocated in a constructor

n Release system resources (Windows, disk drives, etc.)

Destructors
n A destructor is declared by declaring a member function

which has the same name as the class (like a constructor)
only prefixing it with a tilde (~) character.

n There is ever only one destructor per class.

n Destructors do not take arguments.

n It is not usually necessary to zero out member variables
n The destructor is called right before the object goes away, so

dangling values in member variables shouldn’t matter.

n Let’s look at a class definition that contains a destructor…

Destructors
n The following class simply shows a constructor and a destructor.

n We’ll print out messages from each so that we know when the
runtime environment is executing them…

class SomeClass

{

public:

 SomeClass()

 {

 cout << “We’re in the constructor” << endl;

 }

 ~SomeClass()

 {
 cout << “We’re in the destructor” << endl;

 }

};

Demonstration #1

A Simple Destructor

Destructors
n The best way to determine if you need a destructor in a given

class is to look at any constructors which might be present.

n Remember the following modified version of Course from last
lecture:

class Course

{

public:

 Course();

 Course(string theCourse,string theInstructor,int classSize);

private:

 string courseName;

 string instructor;

 int size;

 Student *studentList;

 int nextStudent;

};

2

Destructors
n When looking at the definition of the constructors, we see the

following:

Course::Course()

{

 courseName = “unknown”;

 instructor = “unknown”;

 size = nextStudent = 0;

 studentList = NULL;

}

Course::Course(string theCourseName,string theInstructor,

 int classSize):courseName(theCourseName),

 instructor(theInstructor),size(classSize),

 nextStudent(0)

{

 studentList = new Student[size];

}

Destructors
n In the overloaded constructor that takes three arguments, we are

dynamically allocating memory.

n Since this memory needs to be freed somewhere (presumably
when we’re done with the object) a destructor seems like a logical
choice.

class Course

{

public:

 // Constructors

 Course();

 Course(string theCourse,string theInstructor,int classSize);

 // Destructor

 ~Course(); // Notice the ‘`’ in front of the member name

 // Rest of class definition here…

};

Destructors
n Just like constructors, destructors can be defined either inside the

class definition or in the corresponding .cpp file.

n Using the latter, we might see this:

Course::~Course()

{
// Check to see if studentList has allocated memory

 if (studentList)

 {
 // it does! Delete the dynamically allocated array

 delete [] studentList;

 }

}

Demonstration #2

Course’s Destructor

Destructors and Inheritance

n What happens if I want to derive a class from Course?

n Take a more specific computer science course:

class CSCourse : public Course

{

public:

 CSCourse():Course(),csugAccount(false){}

 CSCourse(string theCourse,string theInstructor,

 int classSize, bool argCSUGaccount):

 Course(theCourse,theInstructor,classSize),

 csugAccount(argCSUGaccount){}

 bool getsCSUGaccount() { return csugAccount; }

private:

 bool csugAccount;

};

Demonstration #3

Inherited Destructor

3

Overriding Destructors?
n If CSCourse had it’s own destructor, would it override
Course’s?

n Suppose we arbitrarily define a destructor for URL:

n What will happen now when we run our simple program?

class CSCourse : public Course

{

public:

 CSCourse():Course(),csugAccount(false){}

 CSCourse(string theCourse,string theInstructor,

 int classSize, bool argCSUGaccount):

 Course(theCourse,theInstructor,classSize),

 csugAccount(argCSUGaccount){}

 ~CSCourse() { cout << “In CSCourse destructor” << endl; }

 bool getsCSUGaccount() { return csugAccount; }

private:

 bool csugAccount;

};

Demonstration #4

Destructors in base and derived
Classes

Overriding Destructors? (cont)

int main()

{

 CSCourse *myCSCourse = new CSCourse();

 Course *aCourse;

 aCourse = myCSCourse;;

 delete aCourse;

}

n OK, why did it call both destructors?

n Because it’s the “right thing to do” :-)

n Destructors are not “overridden” by derived classes.

n When an object is destroyed, the destructor for that class is
called followed by the destructors for any base classes.

n Does this mean we don’t need to worry about virtual
destructors?

n No, we do. Consider the following code:

Demonstration #5

Virtual Destructors?

Overriding Destructors? (cont)
n OK, so how do we declare a virtual destructor?

n Remember, it is the destructor in the base class that needs to
be declared as virtual.

n So, if we declare Course’s destructor to be virtual, we’ll get
the desired behavior... Demonstration #6

Virtual Destructors!

4

Automatically Generated Functions
n If you don’t define a constructor, destructor or copy

constructor, C++ will define a “default” one for you.

n A default constructor does nothing

n A default destructor does nothing

n A default copy constructor will populate all the member
variables of the new class with values found in all the
member variables of the class being copied from.

n Why do we care?

n Consider the following code:

Course MakeACourse(string name,string instructor,int size)

{

 Course returnCourse(name,instructor,size);

 return returnCourse;

}

Automatically Generated Functions (cont)
Course MakeACourse(string name,string instructor,int size)

{

 Course returnCourse(name,instructor,size);

 return returnCourse;

}

n When we return returnCourse the compiler actually
makes a copy of returnCourse on the stack and then
returnCourse’s destructor is called.

n When returnCourse’s destructor is called all dynamically
allocated memory is freed.

n That leaves the copy of returnCourse on the stack with a
pointer to deallocated memory waiting to be assigned to
whatever variable is receiving it in the calling function…
OUCH!

n Next time we’ll work on fixing that problem...

Lecture 12

Final Thoughts

