Lecture 12

Destructors

“Absolute C++”
Chapters 10.3, 15.2

Destructors

= A destructor is declared by declaring a member function
which has the same name as the class (like a constructor)
only prefixing it with a tilde (~) character.

= There is ever only one destructor per class.

= Destructors do not take arguments.

= It is not usually necessary to zero out member variables

= The destructor is called right before the object goes away, so
dangling values in member variables shouldn’t matter.

= Let’s look at a class definition that contains a destructor...

Destructors

= Quick review of constructors:
= They're called when an object is created
= You may perform one-time initializations in constructors
= Memory allocation
= member variable initializations
= You may define multiple constructors
= Each may take a varying number of parameters
= If you do not define a constructor for a given class, C++ will define
one for you (that basically does nothing).
= Destructors are called whenever an object is destroyed (or
just before destruction)
= Destructors give you a place to:
= Free memory allocated in a constructor
= Release system resources (Windows, disk drives, etc.)

Destructors
= The following class simply shows a constructor and a destructor.

= We'll print out messages from each so that we know when the
runtime environment is executing them...

class SomeClass
{
public:

SomeClass ()
{
cout << “We’re in the constructor” << endl;
}
~SomeClass ()

{

cout << “We’re in the destructor” << endl;

Demonstration #1

A Simple Destructor

Destructors
= The best way to determine if you need a destructor in a given
class is to look at any constructors which might be present.
= Remember the following modified version of Course from last
lecture:

class Course

{

public:

Course () ;

Course (string theCourse,string theInstructor,int classSize);

private:

string courseName;
string instructor;
int size;

Student *studentList;
int nextStudent;




Destructors
= When looking at the definition of the constructors, we see the
following:

Course: :Course ()

{
courseName = “unknown”;
instructor = “unknown”;
size = nextStudent = 0;
studentList = NULL;

}

Course: :Course (string theCourseName,string thelInstructor,
int classSize) :courseName (theCourseName) ,
instructor (theInstructor),size(classSize),
nextStudent (0)

studentList = new Student[size];

Destructors
= In the overloaded constructor that takes three arguments, we are
dynamically allocating memory.
= Since this memory needs to be freed somewhere (presumably
when we’re done with the object) a destructor seems like a logical
choice.

class Course

{

public:
// Constructors
Course () ;
Course (string theCourse,string theInstructor,int classSize);
// Destructor
~Course(); // Notice the ‘'’ in front of the member name
// Rest of class definition here..

Destructors
= Just like constructors, destructors can be defined either inside the
class definition or in the corresponding .cpp file.

= Using the latter, we might see this:

Course::~Course ()

// Check to see if studentList has allocated memory
if (studentList)

// it does! Delete the dynamically allocated array
delete [] studentList;

Demonstration #2

Course’s Destructor

Destructors and Inheritance

= What happens if | want to derive a class from Course?
= Take a more specific computer science course:

class CSCourse : public Course
{
public:
CSCourse () :Course (), csugAccount (false) {}
CSCourse (string theCourse,string theInstructor,
int classSize, bool argCSUGaccount) :
Course (theCourse, theInstructor,classSize),
csugAccount (argCSUGaccount) { }
bool getsCSUGaccount () { return csugAccount; }
private:
bool csugAccount;
b

Demonstration #3

Inherited Destructor




Qverriding Destructors? ) )
= If CSCourse had it's own destructor, would it override

Course’s?

=_Suppose we arbitrarily define a destructor for URL:

class CSCourse : public Course

public:
CSCourse () :Course (), csugAccount (false) {}
CSCourse (string theCourse,string thelnstructor,
int classSize, bool argCSUGaccount):
Course (theCourse, theInstructor, classSize),
csugAccount (argCSUGaccount) { }

~CSCourse () { cout << “In CSCourse destructor” << endl; }
bool getsCSUGaccount () { return csugAccount; }
private:

bool csugAccount;

= What will happen now when we run our simple program?

Mration #4

Destructors in base and derived
Classes

Overriding Destructors? (cont)
= OK, why did it call both destructors?

= Because it's the “right thing to do” :-)
= Destructors are not “overridden” by derived classes.

= When an object is destroyed, the destructor for that class is
called followed by the destructors for any base classes.

= Does this mean we don’t need to worry about virtual
destructors?

= No, we do. Consider the following code:

int main()
{
CSCourse *myCSCourse = new CSCourse();
Course *aCourse;
aCourse = myCSCourse;;
delete aCourse;

3 Demonstration #5

Virtual Destructors?

Overriding Destructors? (cont)
= OK, so how do we declare a virtual destructor?
= Remember, it is the destructor in the base class that needs to
be declared as virtual.
= So, if we declare Course’s destructor to be virtual, we'll get
the desired behavior...

3 Demonstration #6

Virtual Destructors!




Automatically Generated Functions

= If you don't define a constructor, destructor or copy
constructor, C++ will define a “default” one for you.

= A default constructor does nothing

A default destructor does nothing

= A default copy constructor will populate all the member
variables of the new class with values found in all the
member variables of the class being copied from.

= Why do we care?
= Consider the following code:

Course MakeACourse (string name,string instructor,int size)
{
Course returnCourse (name, instructor,size);

return returnCourse;

Automatically Generated Functions (cont)
Course MakeACourse (string name,string instructor,int size)

{
Course returnCourse (name, instructor,size);
return returnCourse;

When we return returnCourse the compiler actually
makes a copy of returnCourse on the stack and then
returnCourse’s destructor is called.

When returnCourse’s destructor is called all dynamically
allocated memory is freed.

That leaves the copy of returnCourse on the stack with a
pointer to deallocated memory waiting to be assigned to
whatever variable is receiving it in the calling function...
OUCH!

Next time we’ll work on fixing that problem...

Lecture 12

Final Thoughts




