Lecture 10

Inheritance

“Absolute C++”
Chapter 14

The Conceptual Side of Classes
Earlier we defined classes as a user defined data type
= It could have member functions
= It could have member variables
= This is a technical, concrete definition
= The conceptual definition of classes is just that--it's a concept
= Usually a noun
= trees, birds, people, a person, dog, food, hot dogs, computers, etc.
= Verbs don’t usually make good classes
= thinking, running, listening, laughing, crying
= When we define a class, we're providing a description for a
class of “things”.

= A variable or instance of a class is thought of as one “member”
of the class.

= For example:

The Conceptual Side of Classes (cont)

= When we define a Student we might do the following:

class Student

{
string name;
string address;
string localPhone;
int studentID;

bi

= Here we have defined a class of people... a Student

= When we allocate a variable of type Student...
= We actually “create” one “member” of the class Student.

= Hmmm... a class of people...

The Conceptual Side of Classes (cont)
= Sometimes multiple classes have similarities:

class Student

{
string name;
string address;
string localPhone;
int studentID;

class Instructor

{
string name;
string address;
string phone;
string employeeID;

The Conceptual Side of Classes (cont)

= Sometimes the similarities are common to a broader class
than the class being defined

= In the case of Student and Instructor, consider the common
fields:
= name
= address
= phone

= Suppose we create a class called “Person”, as follows:

class Person

{
string name;
string address;
string phone;

The Conceptual Side of Classes (cont)
= Now maybe you’d think that we could do this:

class Student

{
Person imAPerson;
int studentID;

class Instructor
{
Person imAPerson;
int employeelID;
b

= We can, in fact do this.

= But then any instance would have to access fields in Person through
the imAPerson member variable.




Inheritance
= A better way to do this is with Inheritance
= In C++, when one class inherits another
= all public (and protected) member variables in the “base class” are
accessible from the “derived class” as if they were declared right in
the derived class.
= In our example:
= Person is the base class
= Student is the derived class
= To declare Student as being a derivation of Person, do this:

class Student : public Person
{
int studentID;
b
class Instructor : public Person
{
int employeelID;
1

Inheritance (cont)
= Now, given the following declarations:

class Person

{

public:
string name;
string address;
string localPhone;

b

class Student : public Person
{
public:
int studentID;
b

= We can write the following code:

Inheritance (cont)
int main()
{

Student aStudent;

aStudent.name = “Jon Doe”; // Defined in Person
aStudent.address = “12 Park Place”; // Defined in Person
aStudent.phone = “555-1212"; // Defined in Person
aStudent.studentID = 442221; // Defined in Student

Let’s see this in action:

Demonstration #1

Simple Inheritance

Protected Members

= A derived class may access any of the public members of the base
class, and so can anyone else using the base class directly.

= A derived class may NOT access any of the private members of the
base class, nor may anyone else using the base class directly.

= A derived class may access any of the protected members of the
base class, but no one using the base class directly may access
them.

= To mark a member variable or function as protected, do the
following:

class Person

{

protected:
string name;
string address;
string phone;

b

Protected Members (cont)

= To clarify, when a member function or variable follows a
protected keyword:
= Only member functions defined in a derived class may access the
protected member functions/variables in the base class
= All other classes (not derived from the base class) may not access
the protected member functions/variables

= Let’s look at some code:

class Person
{
public:
void setInfo(string Name,string Addr,string Phone);
protected:
string name;
string address;
string phone;
bi




Protected Members (cont)
= Now Consider a Derived Class..

class Student: public Person
{
public:
void printInfo();
int getId() { return studentID; }
private:
int studentID;
b

void Student::printInfo ()
{

cout << “Name: ™ << name << endl; // name, address and
cout << “Addr: ™ << address << endl; // phone are defined
cout << “Phone: ” << phone << endl; // in the base class

Protected Members (cont)
= Finally, let's use it...

int main()
{
Student aStudent;

aStudent.name = “Joe Student”; /] 22
aStudent.address = “166 Phelps Lane”; /] 22
aStudent.phone = “555-1212"; // 22

aStudent.printInfo();

Since name, address and phone are declared as
protected members of the Person class...
= They cannot be accessed “outside” of the class

Protected Members (cont)
= But they can be accessed inside of the derived class

void Student::printInfo ()
{

cout << “Name: ™ << name << endl; // name, address and
cout << “Addr: ™ << address << endl; // phone are defined
cout << “Phone: ” << phone << endl; // in the base class

}

= The Person class had its own public method for setting info:

void Person::setInfo(string Name,string Addr,string Phone)
{

name = Name;

addr = Addr;

phone = Phone;

Protected Members (cont)
= So the right way to do it (in this particular case) is:

int main()

{
Student aStudent;
// Now set the information. Remember, setInfo() is
// defined in the “Person” class
aStudent.setInfo(“Joe Student”,”166 Phelps Lane”,

”555-1212") ;

aStudent.printInfo();

= Let's see this in action...

Demonstration #2

Protected Members

Cleaning Up Our Implementation
= You might think that the Person class should print its own data:

class Person
{
public:
void setInfo(string Name,string Addr,string Phone);
void printInfo();
private:
string name;
string address;
string phone;
b
void Person::printInfo()
{
cout << “Name: W << name << endl;
cout << “Addr: " << address << endl;

cout << “Phone: ” << phone << endl;




Cleaning Up Our Implementation
= That makes a certain amount of sense...

class Instructor : public Person
{
private:
int employeelID;
b

int main()
{
Instructor anInstructor;
anInstructor.setInfo(“Ron DiNapoli”,”120 Maple Ave”,
“555-1313");
anInstructor.printInfo();
}

= Would work just as well (without having to define printinfo()
in each derived class)

Cleaning Up Our Implementation
= But what about things we might want to print out in a derived
class that aren’t present in the base class?
= studentID field in the Student class.
= employeelID field in the Employee class.
= |s there any way to include them in the
Person: :printInfo() member function?
Not really, but we can do the next best thing.
= We could have a special definition of printinfo which is used
when we're dealing with a Student class instance

void Student::printInfo()
{

cout << “Student ID: “ << studentID << endl;

// Hmmmm, how can I call the printInfo() from Person?
b

Cleaning Up Our Implementation
= Wait a minute. If we already have printinfo defined in
Person, can we define it Student as well?

void Student::printInfo ()

{
cout << “Student ID: “ << studentID << endl;

// Hmmmm, how can I call the printInfo() from Person?

void Person::printInfo()

{

cout << “Name: W << name << endl;
cout << “Addr: " << address << endl;
cout << “Phone: ” << phone << endl;

= Let’s find out...

Demonstration #3

Redefining Base Class
Member Functions

Overriding

Yes, it does work.

Whenever a derived class defines a member function that is
also defined in the base class it is said that the definition in
the derived class overrides the definition in the base class.
In our previous example, Student::printinfo() overrides
Person::printinfo()

However, consider the case where we’d like to write a
function that can take a Person as an argument and will
cause that person’s printInfo method to be invoked:

void printPersonInfo (Person &aPerson)
{

aPerson.printInfo();
b

Overriding (cont)
= Let's consider the following code:

void printPersonInfo (Person &aPerson)
{

aPerson.printInfo();
b

int main()
{
Student aStudent;
Instructor anInstructor;
aStudent.setInfo(“Joe Student”,”l E Main St”,”555-1212");
aStudent.studentID = 33445;
anInstructor.setInfo(“Ron D”,”120 Maple Ave”,”555-1313");
anInstructor.employeeID = 12345;
printPersonInfo (aStudent) ;
printPersonInfo (anInstructor);




1 Demonstration #4

Redefining Base Class
Member Functions Il

Overriding (cont)

So, wait a minute. Did the compiler forget that we overrode
Person::printInfo() in the derived class Student?
No, it's only doing what it was told to do!

Recall that we didn’t get any complaints from the compiler
when we passed anInstructor and aStudent in to the
function printPersonInfo(Person &).

It's legal to do that; since Instructor and Student are
derived from Person, the compiler thinks we want to treat
whatever argument is passed in as a Person.

And, since inside the scope of printPersonInfo the
argument passed is an instance of a Person,

Person: :printInfo() is used when we call
aPerson.printInfo().

Well, doesn’t that make overriding somewhat useless?

Overriding (cont)
= We'll find out more, next lecture!

g Lecture 10

Final Thoughts




