
1

Lecture 10

Inheritance

“Absolute C++”

Chapter 14

The Conceptual Side of Classes
n Earlier we defined classes as a user defined data type

n It could have member functions

n It could have member variables

n This is a technical, concrete definition

n The conceptual definition of classes is just that--it’s a concept
n Usually a noun

n trees, birds, people, a person, dog, food, hot dogs, computers, etc.

n Verbs don’t usually make good classes
n thinking, running, listening, laughing, crying

n When we define a class, we’re providing a description for a
class of “things”.

n A variable or instance of a class is thought of as one “member”
of the class.

n For example:

The Conceptual Side of Classes (cont)

n When we define a Student we might do the following:

class Student

{

 string name;

 string address;

 string localPhone;

 int studentID;

};

n Here we have defined a class of people… a Student

n When we allocate a variable of type Student…
n We actually “create” one “member” of the class Student.

n Hmmm… a class of people…

The Conceptual Side of Classes (cont)
n Sometimes multiple classes have similarities:

class Student

{

 string name;

 string address;

 string localPhone;

 int studentID;

};

class Instructor

{

 string name;

 string address;

 string phone;

 string employeeID;

};

The Conceptual Side of Classes (cont)

n Sometimes the similarities are common to a broader class
than the class being defined

n In the case of Student and Instructor, consider the common
fields:
n name

n address

n phone

n Suppose we create a class called “Person”, as follows:

class Person

{

 string name;

 string address;

 string phone;

};

The Conceptual Side of Classes (cont)
n Now maybe you’d think that we could do this:

class Student

{

 Person imAPerson;

 int studentID;

};

class Instructor

{

 Person imAPerson;

 int employeeID;

};

n We can, in fact do this.
n But then any instance would have to access fields in Person through

the imAPerson member variable.

2

Inheritance
n A better way to do this is with Inheritance

n In C++, when one class inherits another

n all public (and protected) member variables in the “base class” are
accessible from the “derived class” as if they were declared right in
the derived class.

n In our example:

n Person is the base class

n Student is the derived class

n To declare Student as being a derivation of Person, do this:

class Student : public Person

{

 int studentID;

};

class Instructor : public Person

{

 int employeeID;

};

Inheritance (cont)
n Now, given the following declarations:

class Person

{

public:

 string name;

 string address;

 string localPhone;

};

class Student : public Person

{

public:

 int studentID;

};

n We can write the following code:

Inheritance (cont)
int main()

{

 Student aStudent;

 aStudent.name = “Jon Doe”; // Defined in Person

 aStudent.address = “12 Park Place”; // Defined in Person

 aStudent.phone = “555-1212”; // Defined in Person

 aStudent.studentID = 442221; // Defined in Student

…

}

Let’s see this in action:

Demonstration #1

Simple Inheritance

Protected Members
n A derived class may access any of the public members of the base

class, and so can anyone else using the base class directly.

n A derived class may NOT access any of the private members of the
base class, nor may anyone else using the base class directly.

n A derived class may access any of the protected members of the
base class, but no one using the base class directly may access
them.

n To mark a member variable or function as protected, do the
following:

class Person

{

protected:

 string name;

 string address;

 string phone;

};

Protected Members (cont)
n To clarify, when a member function or variable follows a
protected keyword:
n Only member functions defined in a derived class may access the

protected member functions/variables in the base class

n All other classes (not derived from the base class) may not access
the protected member functions/variables

n Let’s look at some code:

class Person

{

public:

 void setInfo(string Name,string Addr,string Phone);

protected:

 string name;

 string address;

 string phone;

};

3

Protected Members (cont)
n Now Consider a Derived Class..

class Student: public Person

{

public:

 void printInfo();

 int getId() { return studentID; }

private:

 int studentID;

};

void Student::printInfo()

{

 cout << “Name: “ << name << endl; // name, address and

 cout << “Addr: “ << address << endl; // phone are defined

 cout << “Phone: ” << phone << endl; // in the base class

}

Protected Members (cont)
n Finally, let’s use it...

int main()

{

 Student aStudent;

 aStudent.name = “Joe Student”; // ??

 aStudent.address = “166 Phelps Lane”; // ??

 aStudent.phone = “555-1212”; // ??

 aStudent.printInfo();

}

n Since name, address and phone are declared as
protected members of the Person class…
n They cannot be accessed “outside” of the class

Protected Members (cont)
n But they can be accessed inside of the derived class

void Student::printInfo()

{

 cout << “Name: “ << name << endl; // name, address and

 cout << “Addr: “ << address << endl; // phone are defined

 cout << “Phone: ” << phone << endl; // in the base class

}

n The Person class had its own public method for setting info:

void Person::setInfo(string Name,string Addr,string Phone)

{

 name = Name;

 addr = Addr;

 phone = Phone;

}

Protected Members (cont)
n So the right way to do it (in this particular case) is:

int main()

{

 Student aStudent;

 // Now set the information. Remember, setInfo() is

 // defined in the “Person” class

 aStudent.setInfo(“Joe Student”,”166 Phelps Lane”,

 ”555-1212”);

 aStudent.printInfo();

}

n Let’s see this in action...

Demonstration #2

Protected Members

Cleaning Up Our Implementation
n You might think that the Person class should print its own data:

class Person

{

public:

 void setInfo(string Name,string Addr,string Phone);

 void printInfo();

private:

 string name;

 string address;

 string phone;

};

void Person::printInfo()

{

 cout << “Name: “ << name << endl;

 cout << “Addr: “ << address << endl;

 cout << “Phone: ” << phone << endl;

}

4

Cleaning Up Our Implementation
n That makes a certain amount of sense...

class Instructor : public Person

{

private:

 int employeeID;

};

int main()

{

 Instructor anInstructor;

 anInstructor.setInfo(“Ron DiNapoli”,”120 Maple Ave”,

 “555-1313”);

 anInstructor.printInfo();

}

n Would work just as well (without having to define printInfo()
in each derived class)

Cleaning Up Our Implementation
n But what about things we might want to print out in a derived

class that aren’t present in the base class?
n studentID field in the Student class.

n employeeID field in the Employee class.

n Is there any way to include them in the
Person::printInfo() member function?

n Not really, but we can do the next best thing.

n We could have a special definition of printInfo which is used
when we’re dealing with a Student class instance

void Student::printInfo()

{

 cout << “Student ID: “ << studentID << endl;

 // Hmmmm, how can I call the printInfo() from Person?

};

Cleaning Up Our Implementation
n Wait a minute. If we already have printInfo defined in

Person, can we define it Student as well?

void Student::printInfo()

{

 cout << “Student ID: “ << studentID << endl;

 // Hmmmm, how can I call the printInfo() from Person?

}

void Person::printInfo()

{

 cout << “Name: “ << name << endl;

 cout << “Addr: “ << address << endl;

 cout << “Phone: ” << phone << endl;

}

n Let’s find out...

Demonstration #3

Redefining Base Class

Member Functions

Overriding
n Yes, it does work.

n Whenever a derived class defines a member function that is
also defined in the base class it is said that the definition in
the derived class overrides the definition in the base class.

n In our previous example, Student::printInfo() overrides
Person::printInfo()

n However, consider the case where we’d like to write a
function that can take a Person as an argument and will
cause that person’s printInfo method to be invoked:

void printPersonInfo(Person &aPerson)

{

 aPerson.printInfo();

};

Overriding (cont)
n Let’s consider the following code:

void printPersonInfo(Person &aPerson)

{

 aPerson.printInfo();

};

int main()

{

 Student aStudent;

 Instructor anInstructor;

 aStudent.setInfo(“Joe Student”,”1 E Main St”,”555-1212”);

 aStudent.studentID = 33445;

 anInstructor.setInfo(“Ron D”,”120 Maple Ave”,”555-1313”);

 anInstructor.employeeID = 12345;

 printPersonInfo(aStudent);

 printPersonInfo(anInstructor);

}

5

Demonstration #4

Redefining Base Class

Member Functions II

Overriding (cont)
n So, wait a minute. Did the compiler forget that we overrode
Person::printInfo() in the derived class Student?

n No, it’s only doing what it was told to do!

n Recall that we didn’t get any complaints from the compiler
when we passed anInstructor and aStudent in to the
function printPersonInfo(Person &).

n It’s legal to do that; since Instructor and Student are
derived from Person, the compiler thinks we want to treat
whatever argument is passed in as a Person.

n And, since inside the scope of printPersonInfo the
argument passed is an instance of a Person,
Person::printInfo() is used when we call
aPerson.printInfo().

n Well, doesn’t that make overriding somewhat useless?

Overriding (cont)
n We’ll find out more, next lecture!

Lecture 10

Final Thoughts

