
1

Lecture 8

C-Strings, C++ Strings

And Multidimensional Arrays

“Absolute C++”

Chapter 9, 5.4

An Introduction to C-strings

n A C string is not a class, it is simply an array of characters.

n Any given C string of length n will correspond to a character
array of at least n+1 characters. The extra character is a
NULL byte which terminates the string.

n Most of us old time C programmers (well, OK, I’m not really
that old) tended to stick with C strings instead of
“converting”.

n Or we wrote our own String classes which suited our needs
better than the C++ string class.

n Either way, it’s good to know about C strings.

n Some parts of the language still depend on them:
n ifstream::open

n iostream::getline

An Introduction to C-strings

n Even though C strings are based on the concept of a simple
array of characters, cin and cout try to deal with them as
best as they can.

n Consider the following code:

int main()

{

 char cStr[80]; // Allocate a C string

 cout << “Enter a string> “;

 cin >> cStr;

 cout << “You entered… “ << cStr;

}

n Let’s make sure this works the way we think it does...

Demonstration #1

C Strings

Reading in Strings…
n Why did input stop in the middle of our sentence?

n Because cin is designed to stop reading when whitespace is
encountered.

n So how do we read in strings with spaces?

n Read in a character at a time, or rely on getline()

n Only catch is that getline() relies on a C style string.

n You need to allocate space for one before calling…

int main()

{

 char cStr[80]; // Allocate a C string

 cout << “Enter a string> “;

 cin.getline(cStr);

 // etc., etc..

}

More Dangers…

n Be careful when mixing the reading of strings with the
reading of integers.

n You might get some unexpected behavior!

n Consider the following code:

int main()

{

 int k;

 char cStr[80]; // Allocate a C string

 cout << “Enter a number> “; cin >> k;

 cout << “Enter a string> “; cin.getline(cStr,79);

 cout << “Number is: “ << k << “, string is: “ << cStr

 << endl;

}

2

More Dangers (cont)

n The output of this simple program might look like this:

Enter a number> 1

Enter a string>

Number is 1, string is:

n So what is going on?

n The input stream (that which cin reads from) is thought of
as an array of characters.

n So when we enter “1” above, we put the following two
characters into the input stream buffer:

‘1’ ‘\n’cin

More Dangers (cont)

n When the following line of code is executed...

cout << “Enter a number> “; cin >> k;

n cin manages to grab the “1” out of the input stream buffer
but leaves the newline there. This leaves us with
something like this:

‘\n’ ??cin

More Dangers (cont)
n Now, when the next line of code is executed...

cout << “Enter a string> “; cin >> c!Str;

n cin sees the newline as the first character in the input
stream buffer and assumes we haven’t “seen” it before.

n It processes the newline viewing it as the terminating
newline for our string read.

n This leaves us with an empty string in our string variable.

n So what can we do?
n Try to extract the newline before actually calling “cin >> cStr”

n Find a different way to read in data
n Fall back to char I/O

n Read in ints, etc., as strings, then convert

Demonstration #2

Reading in Data

More info on C strings
n How do we assign initial values to C strings?

n The first method allows you to provide an initial value to a C
string defined to hold 49 characters (+1 for the NULL byte)

n The second method allows you to provide an initial value
AND allow the compiler to figure out the size (length of
initial value + 1 for NULL byte)

n The third method is an alternative syntax for the second
method.

char str1[50] = “This is a test”;

char str2[] = “We’re already 1/3 way through the semester”;

char *str3 = “This is another way”;

More info on C strings
n Be careful of this

n The above comparison will always be false

n str1 and str2 are pointers (remember, arrays are pointers)

n The comparison compares the pointer values, not the
values of what each points at.

n How do you compare C strings?

char str1[80],str2[80];

cin.getline(str1,79);

cin.getline(str2,79);

if (str1 == str2) {

 // Do something useful, presumably…

}

// Rest of code here

3

Standard C library routines
n Here are a few standard C library string routines:

n Savitch, page 357, has a full reference for these functions.

n To answer the question posed on the last slide, you would
compare the strings like this:

strcpy(char *s1,char *s2) -- Copy s2 to s1

strcat(char *s1,char *s2) -- Append s2 to s1

strlen(char *s1) -- return length of s1

strcmp(char *s1,char *s2) -- Compare s2 and s1

char str1[80],str2[80];

cin.getline(str1,79);

cin.getline(str2,79);

if (!strcmp(str1,str2))

{

 // Strings are equal…

}

Multidimensional Arrays
n A multi-dimensional array (of ints) is declared as follows:

n This creates a multi-dimensional array of 7 rows and 8
columns.

n You can have as many “dimensions” as system resources
allow.

n The following is also legal:

int mdarray[7][8]; // 7 rows, 8 colums

char foo[5][6][7][8][9];

n What does it represent?

n I have no idea.

n But it’s legal!

Multidimensional Arrays (cont)
n To access an element, use both indices:

n You can also initialize multi-dimensional arrays when you
declare them.

n Both of the following initializations are legal:

mdarray[2][2] = 56;

cout << “mdarray[2][2] = “ << mdarray[2][2] << endl;

// The following declaration is more “human friendly”

int mda[3][4] = { {1,2,3,4},{4,2,5,4},{5,5,5,5} };

// But the compiler can figure out the more complex version

int mda[3][4] = { 1,2,3,4,4,2,5,4,5,5,5,5 };

Back to C strings
n Even more danger to be wary of…

n Note the use of strcpy to copy str2 to str1.

n Problem is, str1 is bigger than str2.

n So what does C++ do? Does it only copy as many
characters as will fit into str2?

n Naaah, it copies all of them and writes beyond the
boundary of str2.

n Doesn’t that cause problems?

n Yup! In this case you’d be overwriting stack memory which
is likely to cause problems immediately.

char *str1 = “This is a test”; // Allocates 15 bytes

char *str2 = “Hello world”; // Allocates 12 bytes

strcpy(str2,str1); // Copies str1 to str2?

The C++ String class
n So what can we do?

n Be very, very careful

n Be prepared for lots of debugging

n OR, use the C++ string class

n We’ve used the string class in lecture before, but haven’t
gone over it in any detail.

n It has many options built in to the class instead of needing to
rely on library functions like C strings do.

n Let’s review some usage of the C++ string class:

void main()

{

 string str = “Hello World”;

 cout << “str value is: “ << str << endl;

}

The C++ String class (cont)
n Note how we can use the string class as if it were a built in

type:
n Assign values directly to a string variable (overloaded operators)

n “output” string values directly to streams (cout)

n etc.

n We can also take advantage of some of the many member
functions present in the string class:

void main()

{

 string str = “Hello World”;

 cout << “3rd character of str is: “ << str[3] << endl;

 cout << “4th character of str is: “ << str.at(4) << endl;

 cout << “str contains “ << str.length() << “ characters.”;

 string str2 = str1 + “, how are you?”;

 cout << “str2 is: “ << str2 << endl;

}

4

The C++ String class--some member funcs
n Here are some common member functions you might use:

Str.Substr(pos,length)-- returns the substring starting

 at position that is length long
Str.C_str() -- return a C-style string (read only)

Str.at(i) (str[i]) -- read/write access to the character

 at position i.
Str1 += str2 -- Concatenate str2 onto str1
Str.length() -- Return the length of str
Str.find(str1) -- Find the index of the first occurrence

 of str1 in str
Str.find(str1,pos) -- Find the index of the first occurrence

 of str1 in str, starting at position
 pos.

The C++ String class--comparison operators
n Unlike C strings, you can compare C++ strings directly using

the standard comparison operators:

void main()

{

 string str1;

 string str2;

 cout << “Enter two strings… “ << endl;

 ReadData(str1); // This function was defined in DEMO 2

 ReadData(str2);

 if (str1 == str2)

 cout << “The strings are equal!” << endl;

 else

 cout << “The strings are not equal” << endl;

}

Demonstration #3

Comparing C++ Strings

Lecture 8

Final Thoughts

