
1

Lecture 6

Pointers

“Absolute C++”

Section 10.1

Pointers

n At this point, iPtr is a pointer to an int data type.
n But it hasn’t been initialized, so it doesn’t point at anything

n You can do one of two things with it
n Dynamically allocate space for a new int and store the result in
iPtr

n Assign an existing pointer value to it

int *iPtr; // Declares a pointer to int

n What is a pointer?
n A pointer is a physical memory address which “points” at

(presumably) an instance of a data type (either built-in or user
defined)

n A pointer variable “evaluates” to this address and is a way to pass a
reference to the data type around without passing the data type itself.

n A pointer variable to a given data type is declared by declaring a
variable of that data type, except you precede the variable name with
an asterisk

Dynamic Allocation
n We just showed how you declare a pointer variable,

here’s how you allocate space to it dynamically...

int *iPtr;

iPtr = new int; // could also use new int();

n At this point iPtr contains one of the following:

n A pointer to the newly allocated data type (in this case, an int)

n NULL (if the pointer could not be allocated due to insufficient
memory)

n You should always check for NULL before using a dynamically
allocated pointer. (there is another way to check, but that’s later…)

int *iPtr = new int; // Yes, this is legal

if (iPtr == NULL)

{

 // Report memory error here...

Dynamic Allocation (cont)
n All dynamically allocated pointers stay “valid” until:

n Your program terminates

n You dispose of them

n How do you dispose of a dynamically allocated pointer?

int main()

{

 int *iPtr = new int;

 if (iPtr == NULL)

 {

 cout << “Could not allocate pointer, bye! “;

 return -1;

 }

 // Rest of program here

 delete iPtr; // This is how you dispose of a pointer

 return 0;

}

Pointers: How To Access Content
n Access the contents of a pointer variable (the data it points to) by

preceding the pointer variable with an asterisk.

int main()

{

 int* iPtr = new int;

 if (iPtr == NULL)

 {

 cout << “Could not allocate pointer, bye! “;

 return -1;

 }

 *iPtr = 5; // Will actually write data into memory

 cout << “iPtr is “ << iPtr << “ and *iPtr is “

 << *iPtr << endl;

 delete iPtr; // This is how you dispose of a pointer

 return 0;

}

Pointers: How To Access Content
int main()

{

 int *iPtr;

 iPtr = new int;

 *iPtr = 5;

 cout << “iPtr is “ << iPtr

 << “ and *iPtr is “

 << *iPtr << endl;

 delete iPtr;

 return 0;

}

iPtr ?? ?? ?? ??

?? ?? ?? ??

Random Memory...

Allocated Memory

00 00 00 05

• First, the variable is declared. At this point it points off into space (usually address 0)
• Second, space is allocated. What is being pointed at is still undefined
• Third, a value is assigned
• Fourth, the value is retrieved and then the pointer is deleted. The content cannot be trusted!

Allocated Memory

2

Pointers: Allocating User Defined Types
n Everything we’ve just seen applies to classes too.

n Remember our Course class from previous lectures?

class Course

{

public: // These can be seen outside the class

 // Define member functions

 string getCourseName();

 string getInstructor();

 int getStudentCount();

 void setCourseName(string theName);

 void setInstructor(string theInstructor);

 void setStudentCount(int count);

private: // These can be seen inside the class only

. . .

};

Pointers: Allocating User Defined Types
n We can define a pointer to it the same way we do for a

built in type...

int main()

{

 Course *aCourse;

 aCourse = new Course;

 if (aCourse == NULL) // Make sure we got the memory

 {

 cout << “Could not allocate memory for Course” << endl;

 return -1;

 }
// Rest of program here…

 delete aCourse;

 return 0;

}

n But how do we access the member functions and variables?

Pointers: Accessing Members via Pointers
n One way is to use the asterisk to dereference the pointer

and then the period to get at the field:

Course *aCourse = new Course;

 (*aCourse).setStudentCount(45);

n Another way is to do both steps all at once with the ->
operator

 Course *aCourse = new Course;

 aCourse->setStudentCount(45);

n Let’s take a look at this in action...

Demonstration #1

Pointers to Classes

Pointer Chaos
n What do you suppose the difference is between the following?

int *a,*b;

a = new int;

b = new int;

*a = 5;

*b = *a;

delete a;

cout << “b is “ << *b << endl;

n and...

int *a,*b;

a = new int;

b = new int;

*a = 5;

b = a;

delete a;

cout << “b is “ << *b << endl;

Pointer Chaos (cont)
n Let’s examine the second block more closely...

int *a,*b;

a = new int;

b = new int;

*a = 5;

b = a;

delete a;

cout << “b is “ << *b << endl;

n Two things go wrong here towards the end of our code
n We assigned the pointer a to the variable b and then deleted a.

n This means that the actual pointer (memory address) stored in a was
stored in b.

n When we deleted a, b was left “dangling”

n We changed the value of b without deleting the pointer it
previously held
n We lost any reference to that pointer, but it is still allocated!

3

Demonstration #2

Pointer Chaos!

Pointers to Existing Variables
n On top of being able to dynamically allocate and delete pointers to

memory, we can also get a pointer to an existing variable.

n This is done with the & operator.

int main()

{

 int k, *iPtr;

 k = 5;

 iPtr = &k;

 cout << “k is “ << k << “ and *iPtr is “ << *iPtr

 << endl;

 return 0;

}

n Let’s take a look at this with our Course example:

Demonstration #3

Using the & Operator

Pointers to Existing Variables (cont)
n There are dangers...

n What happens here?
n iPtr is set to point at the address of p.

n At the end of the if statement, p goes out of scope.

n iPtr is left pointing at unallocated (stack) memory.

int main()

{

 int *iPtr;

 if (true)

 {

 int p = 5;

 iPtr = &p;

 }

 cout << “*iPtr is “ << *iPtr << endl;

}

A Little About Stack Frames
n Whenever a new “scope” is encountered, C++ will allocate any local

variables in that scope on the stack.

n Whenever a function is called a new “stack frame” is allocated on the
stack which contains:

n Space for all local variables in the function

n Information on which function to return to when done

n Whenever a function is finished (return keyword encountered):

n That function’s stack frame is “removed”

n Consider the following function:

Course *MakeCourse(string name,string instructor,int size)

{

 Course aCourse;

 aCourse.setCourseName(name);

 aCourse.setInstructor(instructor);

 aCourse.setStudentCount(size);

 return(&aCourse);

}

Stack Frames (cont)

n Now consider that function being called like this:

n What happens here?

int main()

{

 Course *cs213;

 cs213 = MakeCourse(“COM S 213”,”DiNapoli”,45);

 cout << “cs213->name = “ << cs213->getCourseName() << endl;

 cout << “cs213->instructor = “ << cs213->getInstructor()

 << endl;

 cout << “cs213->studentCount = << cs213->getStudentCount()

 << endl;

}

4

 Stack Frames (cont)

int main()
{
 Course *cs213;

cs213
main()

aCourse
size

instructor
name

MakeCourse()

aCourse
size

instructor
name

MakeCourse

 cs213 = MakeNewCourse(“COM S 213”,
 “DiNapoli”, 45);

Course *MakeNewCourse(string name,
 string instructor,
 int size)
{
 Course aCourse;
 . . .
 return &aCourse;
}

// back in main()
cout << “cs213->name is “ <<
 cs213->getCourseName() << endl;

Lecture 6

Final Thoughts

