
1

Lecture 4

Classes

“Absolute C++”

Chapter 6

Introduction to Classes

ifstream inFile;
inFile.open(“input.dat”);
if (inFile.fail()) // fail is a member function
{
 cout << “Couldn’t open file” << endl;
}

n inFile is actually an instance of the ifstream class.

n But what is a class?

n Last lecture, we talked about streams and used functions
called member functions.

n These functions operate on the variable they are “attached
to”

Classes

n What is a class?
n A very simple definition: “A class is a user-defined type”

n Are all user-defined types classes?
n No.

n C++ supports the C notion of a “struct”

n A struct allows programmers to define their own data type structures
n Similar to RECORDs in Pascal

n Are all classes user-defined types?
n Yes

n There are no “built in classes” in C++

n There are provided standard class libaries
n iostream

n string

n OK, that’s great. But, what is a class?

Classes (cont)
n A class is a traditional data structure with a set of functions.

n Let’s start with a simple C style structure definition

typedef struct{
 string name;
 string instructor;
 int numStudents;

} Course;

n Once defined I could use this “user defined” data type anywhere in
my code:

int main()
{

 Course cs213;
 cs213.name = “COM S 213”;
 cs213.instructor = “DiNapoli”;
 cs213.numStudents = 45;
 }

Classes (cont)
n Now, where do these functions fit in?

n The functions (called member functions) are tied to the data
structure

n Any “field” of the data structure may be accessed by any member
function as if it were in a global scope.

n Let’s take a look at this before we go any further...

class Course
{
public:
 // Define member functions
 int getStudentCount() { return numStudents; }
 // Define member variables
 string name;
 string instructor;
 int numStudents;
};

Demonstration #1

Very Simple Class

2

Classes: Public vs. Private
n Why bother with simple functions like getStudentCount() ?

n It’s a bad idea to directly access member variables
n Circumvent error checking, easy to screw up data.

n Can’t I just use the member variables directly anyway?

class Course
{
public: // These can be seen outside the class
 // Define member functions
 int getStudentCount() { return numStudents; }

private: // These can be seen inside the class only
 // Define member variables
 string name;
 string instructor;
 int numStudents;
};

Demonstration #2

Public vs. Private

Classes: Public vs. Private (cont)
n OK, so how do I access private data outside of the class?

n You don’t, that’s the whole idea!

n You can use get/set functions (public) to return the values for you

class Course
{
public: // These can be seen outside the class
 // Define member functions
 string getCourseName() { return name; }
 string getInstructor() { return instructor; }
 int getStudentCount() { return numStudents; }
 void setCourseName(string theName)
 { name = theName; }
 void setInstructor(string theInstructor)
 { instructor = theInstructor; }
 void setStudentCount(int count)
 { numStudents = count; }
private: // These can be seen inside the class only
 ...

Demonstration #3

Access functions

(getters/setters)

Classes: Lots of Member Functions
n Doesn’t the class get unruly with all of those member

functions?
n Not really. The class definition only needs to have function

declarations, not definitions.

class Course
{
public: // These can be seen outside the class
 // Define member functions
 string getCourseName();
 string getInstructor();
 int getStudentCount();
 void setCourseName(string theName);
 void setInstructor(string theInstructor);
 void setStudentCount(int count);

private: // These can be seen inside the class only
 ...

Classes: Lots of Member Functions
n Alright, declarations are cool, but then where do the

member functions get defined?
n Anywhere you want them to be defined :-)

n No, seriously, with the help of some added notation they can be
defined just about anywhere...

string Course::getCourseName()
{ return name; }

int Course::getStudentCount()
{ return numStudents; }

n Note the use of Course:: to specify the class in question

n Note how I’m using member variables as if they were
some sort of global variable

3

Demonstration #4

Member Function Definitions

Classes: More on Public vs. Private
n The public and private labels can appear as many times

as you want them to in a class definition.

class Course
{
public: // These can be seen outside the class
 // Getter functions
 string getCourseName();
 string getInstructor();
 int getStudentCount();
public:
 // Setter functions
 void setCourseName(string theName);
 void setInstructor(string theInstructor);
 void setStudentCount(int count);
private: // These can be seed inside the class only
 // Member variables
 ...

Classes: More on Public vs. Private
n Member functions can be private as well.

class Course
{
public: // These can be seen outside the class
 // Getter and Setter functions
 string getCourseName();
 string getInstructor();
 int getStudentCount();
 void setCourseName(string theName);
 void setInstructor(string theInstructor);
 void setStudentCount(int count);

private: // These can be seed inside the class only
 // private member functions
 bool validateStudentCount(int count);
 ...

Classes: More on Public vs. Private
n You can still have public member variables

n If no public or private label is specified, private is
assumed

class Course
{
 bool validateStudentCount(int count); // implicit

private
public:
 bool isFull; // publicly accessible member variable

 // Getter and Setter functions
 string getCourseName();
 string getInstructor();
 int getStudentCount();
 void setCourseName(string theName);
 void setInstructor(string theInstructor);
 void setStudentCount(int count);
...

Where should we Define Member Functions?

n How do you know when to define a member function in the
class definition vs defining it outside of the class
definition?

n There is a simple technical explanation.

n I’m not going to tell you yet :-)

n A good rule of thumb is:
n If the definition is simple (one line of code) you should define it in

the class definition.

n Getter/Setter functions are prime examples.

n Otherwise, define outside of the class definition, usually in a
separate file.

What Files Should These Definitions Go In?

// Course.h -- Header file for Course class
class Course
{
public: // These can be seen outside the class
 // Define member functions
 string getCourseName();
 string getInstructor();
 int getStudentCount();
 void setCourseName(string theName);
 void setInstructor(string theInstructor);
 void setStudentCount(int count);

private: // These can be seed inside the class only
 string name,instructor;
 int count;
};

4

What Files Should These Definitions Go In?

// Course.cpp -- Definition file for Course class
#include “Course.h”
string Course::getCourseName()
{
 return name;
}

String Course::getInstructor()
{

 return instructor;
}

String Course::getStudentCount()
{
 return count;
}
// etc., etc.

