Lecture 3

More on Flow Control,
More on Functions,
and Intro to Streams

“Absolute C++”
Sections 1.3,2.2,4.2

Flow Control -- big if/else statements
Consider the following code:

int x;

cin >> x;

if (x == 0)

cout << “x is zero” << endl;
else if (x == 1)

cout << “x is one” << endl;
else if (x == 2)

cout << “x is two” << endl;
else

cout << “x is not 0,1 or 2” << endl;

Here we only have a single line of code to be executed
when the if statement is true. No braces ({,}) are used.

Flow Control -- Be careful with if/else
Be careful, though:
if (fuelGaugeReading < 0.75)

if (fuelGaugeReading < 0.25)

cout << “Fuel is very low. << endl;
else

cout << “Fuel over 3/4, don’t stop!” << endl;

= This does not produce the desired effect.

= [f the reading is between 0.25 and 0.74, what is
displayed?

= This is why scope delimiters can be very important

Flow Control -- Be careful with if/else
The right way:
if (fuelGaugeReading < 0.75)
{
if (fuelGaugeReading < 0.25)
cout << “Fuel is very low. << endl;

}

else

cout << “Fuel over 3/4, don’t stop!” << endl;

= Now, we'll get the desired results.

= You might want to always use scope delimiters to avoid
confusion and mistakes down the road.

Flow Control -- big if/else statements
OK, remember the code from a few slides ago...

int x;

cin >> x;

if (x == 0)

cout << “x is zero” << endl;
else if (x == 1)

cout << “x is one” << endl;
else if (x == 2)

cout << “x is two” << endl;
else

cout << “x is not 0,1 or 2” << endl;

= There is nothing wrong with this code, but can be
inefficient.

Flow Control -- switch statement

A better way:

int x;

cin >> x; // read in number from console

switch (x)

{

< “x is one” << endl;

< “x is two” << endl;

< “x is not 0,1 or 2” << endl;

Flow Control -- switch statement

A switch statement takes the form:

switch (integerValue)
{
case integerValuel:
statementl; // multiple statements allowed
break;

case integerValuel:

statement2; // multiple statements allowed
break;

default:
statementN; // multiple statements allowed

}

¢ What happens if break is omitted in a given case statement?

Demonstration #1

switch statement

Flow Control -- for loop

for (int cntr = init; cntr <= final; cntr += incr

= A for loop contains three distinct parts:
= an initialization
= a test for completion
= an increment operation
= Initialization
= The “counter” variable is often declared right in the for statement.
= You have a chance here to set an initial value
= Test

= When this expression evaluates to false (0), the for loop
terminates.

= Increment
= An operation which is performed at the “end” of the for loop.
Let’s see an example...

Flow Control -- for loop

Say we need to loop 10 times:

for (int x=0; x<10; x++)
{

cout << “Ron DiNapoli” << endl;

= [nitialize - x = 0
= Test-- x < 10
= Increment -- x++

Flow Control -- for loop

Any (or all) of the three statements in a for loop may be omitted:
for (;7)
{

// Loop forever!

Most common use is to create an “infinite loop”
= same as using while (true);

Demonstration #2

for loop

The void type

We’ve been using it, but we’ve never talked about it.
void is used to neatly specify that no return value is required

can also be used to specify that a function takes no
parameters

// doNothing () is a function which takes no parameters and

// returns no value

void doNothing (void)

{

}

int x = 1; // well, something, but really nothing :-)

You cannot create a variable of type void.

That's because it really isn’t a type--the compiler would have
no idea how big a “void” is.

Function Overloading

= What do you suppose happens when compiling the following
code:

void myPrint (int x)
{

cout << “Integer is: “ << x << endl;

}

void myPrint (string s)
{

cout << “String is: “ << s << endl;

}

= The myPrint function is seemingly defined twice.
= s this legal?

Function Overloading (cont)

= Yes, it is legal, so long as the argument list is different.
= When the compiler compiles this code it can distinguish

between the two “versions” by looking at the argument list.

= Consider the following code:

void main()

{

}

myPrint (1);

How does the compiler know which version of “myPrint” to
call?

It looks at the arguments passed. In this case, an integer is
passed.
It looks to see if there is a version of myPrint() that takes a

single integer argument.

Function Overloading (cont)

= When it finds it, it will produce compiled code such that
when the resulting program is run, we’ll get the following
output:

Integer is: 1

= Let’s see this in action...

!L Demonstration #3

Function Overloading

Streams

= In the past we’ve mentioned that when using cin and cout,

we're actually dealing with a stream of characters.

= We use the same type of streams to do file I/O
= Let’s start with the stream used to write to a file.

#

It is called ofstream (for output file stream)
It is used like this:

include <fstream>

int main()

{

ofstream outStream;
outStream.open (“output.dat”); // name of file to open
outStream << “This is a test” << endl;

outStream.close () ; // close the file when done

Streams (cont)

#include <fstream>

int main()

{

}

ofstream outStream;
outStream.open (“output.dat”); // name of file to open
outStream << “This is a test” << endl;

outStream.close () ; // close the file when done

= Notice how we use outStream just

like cout. output dat
outStream and cout are both

streams, but outStream refers to the
file “output.dat” instead of the
console.

This program causes the file on the
right to be created.

outStream.open (“output.dat”);

A brief look ahead...

// name of file to open

= Notice the line of code above.
= From experiences with other languages you might have you

can probably guess that :
= “outStream” is being treated as some form of data structure
= “open()” is some sort of member of that data structure

= If you are new to object oriented programming, this may be

confusing.

= Bascially, the “open()” member function is a function call that

pertains to the object named “outStream”.

= We’ll cover more on objects, member functions and classes

next lecture.

Back to Streams...

outStream.close () ;

If you explicitly open a file stream, you must remember to
close it.

= How else would you open a stream?
= We’'ll cover that later :-)
= We’ve covered how you write to a file, how do you read from
one?
= With a different data type called “ifstream”

Reading from streams

#include <fstream>

int main()

{

}

ifstream inStream;
inStream.open(“input.dat”); // name of file to open
inStream >> str;

cout << “We just read in: “ << str << endl;

inStream.close () ; // close the file when done

= Notice the syntax is quite similar to our dealings with

“ofstream”.

Once the file is opened we can use “inStream” just like we’d
use “cin”--only we’ll be reading from input.dat instead of the
console.

Let’s check this out...

Demonstration #4

ofstream and ifstream

Being more careful...

The code we’ve written has one major flaw.

If the open operation fails, we aren’t handling the condition
properly.

There are two ways to check that a file was opened.

Both involve using special member functions:

= The member function is_open()
= The member function fail()

#include <fstream>

int main()

{

ofstream outStream;
outStream.open (“output.dat”); // name of file to open
if (outStream.is_open())

{

// Proceed with file manipulation code here..

Being more careful...

#include <fstream>
int main()
{
ifstream inStream;
inStream.open(“input.dat”); // name of file to open
if (inStream.fail())
{
cout << “ERROR.. could not open stream” << endl;
return -1;
}
inStream >> str;
cout << “We just read in: “ << str << endl;

inStream.close () ; // close the file when done

= Both ways are valid methods for checking whether or not a
file opened. The “fail” method is more generic...

Checking for EOF

= When you don’t know how big the file you are reading in from
is, you'll need to know how to check for end-of-file.
= There are two ways to do it.
= is_eof() member function
= Boolean “test” on the stream variable

int main()

{

ifstream inFile (“input.dat”); // What’s this shortcut?

long data;

if (inFile.fail()) return -1;

while (inFile) // both lines do the same thing
// while (!inFile.is_eof()) // both lines do the same thing

{
inFile >> data;
cout << “Read in: “ << data << endl;

* Lecture 3

Final Thoughts...

