
1

Lecture 3

More on Flow Control,

More on Functions,

and Intro to Streams

“Absolute C++”

Sections 1.3, 2.2, 4.2

Flow Control -- big if/else statements

int x;

cin >> x;

if (x == 0)

  cout << “x is zero” << endl;

else if (x == 1)

  cout << “x is one” << endl;

else if (x == 2)

  cout << “x is two” << endl;

else

  cout << “x is not 0,1 or 2” << endl;

n  Here we only have a single line of code to be executed
when the if statement is true.  No braces ({,}) are used.

Consider the following code:

Flow Control -- Be careful with if/else

if (fuelGaugeReading < 0.75)

  if (fuelGaugeReading < 0.25)

    cout << “Fuel is very low. << endl;

else

  cout << “Fuel over 3/4, don’t stop!” << endl;

n This does not produce the desired effect.

n If the reading is between 0.25 and 0.74, what is
displayed?

n This is why scope delimiters can be very important

Be careful, though:
Flow Control -- Be careful with if/else

if (fuelGaugeReading < 0.75)

{

  if (fuelGaugeReading < 0.25)

    cout << “Fuel is very low. << endl;

}

else

  cout << “Fuel over 3/4, don’t stop!” << endl;

n Now, we’ll get the desired results.

n You might want to always use scope delimiters to avoid
confusion and mistakes down the road.

The right way:

Flow Control -- big if/else statements

int x;

cin >> x;

if (x == 0)

  cout << “x is zero” << endl;

else if (x == 1)

  cout << “x is one” << endl;

else if (x == 2)

  cout << “x is two” << endl;

else

  cout << “x is not 0,1 or 2” << endl;

n There is nothing wrong with this code, but can be
inefficient.

OK, remember the code from a few slides ago…
Flow Control -- switch statement

int x;

cin >> x; // read in number from console

switch(x)

{

  case 0:

     cout << “x is zero” << endl;

     break;

  case 1:

     cout << “x is one” << endl;

     break;

  case 2:

     cout << “x is two” << endl;

     break;

  default:

     cout << “x is not 0,1 or 2” << endl;

}

A better way:



2

Flow Control -- switch statement

switch(integerValue)
{

  case integerValue1:
statement1;   // multiple statements allowed

break;

  case integerValue2:
statement2;   // multiple statements allowed
break;

  default:

      statementN;   // multiple statements allowed
}

A switch statement takes the form:

•  What happens if break is omitted in a given case statement?

Demonstration #1

switch statement

Flow Control -- for loop
for (int cntr = init; cntr <= final; cntr += incr)

n A for loop contains three distinct parts:
n an initialization

n a test for completion

n an increment operation

n Initialization
n The “counter” variable is often declared right in the for statement.

n You have a chance here to set an initial value

n Test
n When this expression evaluates to false (0), the for loop

terminates.

n Increment
n An operation which is performed at the “end” of the for loop.

n Let’s see an example...

Flow Control -- for loop

for (int x=0; x<10; x++)

{

  cout << “Ron DiNapoli” << endl;

}

n Initialize --   x = 0

n Test --   x < 10

n Increment --  x++

Say we need to loop 10 times:

Flow Control -- for loop

for (;;)

{

  // Loop forever!

}

n   Most common use is to create an “infinite loop”
n   same as using while(true);

Any (or all) of the three statements in a for loop may be omitted:

Demonstration #2

for loop



3

The void type

// doNothing() is a function which takes no parameters and

// returns no value

void doNothing(void)

{

  int x = 1;  // well, something, but really nothing :-)

}

n You cannot create a variable of type void.

n That’s because it really isn’t a type--the compiler would have
no idea how big a “void” is.

n We’ve been using it,  but we’ve never talked about it.

n void is used to neatly specify that no return value is required

n can also be used to specify that a function takes no
parameters

Function Overloading

void myPrint(int x)

{

  cout << “Integer is: “ << x << endl;

}

void myPrint(string s)

{

  cout << “String is: “ << s << endl;

}

n The myPrint function is seemingly defined twice.

n Is this legal?

n What do you suppose happens when compiling the following
code:

Function Overloading (cont)

n How does the compiler know which version of “myPrint” to
call?

n It looks at the arguments passed.  In this case, an integer is
passed.

n It looks to see if there is a version of myPrint() that takes a
single integer argument.

n Yes, it is legal, so long as the argument list is different.

n When the compiler compiles this code it can distinguish
between the two “versions” by looking at the argument list.

n Consider the following code:

void main()

{

  myPrint(1);

}

Function Overloading (cont)
n When it finds it, it will produce compiled code such that

when the resulting program is run, we’ll get the following
output:

Integer is: 1

n Let’s see this in action…

Demonstration #3

Function Overloading

Streams
n In the past we’ve mentioned that when using cin and cout,

we’re actually dealing with a stream of characters.

n We use the same type of streams to do file I/O

n Let’s start with the stream used to write to a file.

n It is called ofstream (for output file stream)

n It is used like this:

#include <fstream>

int main()

{

  ofstream outStream;

  outStream.open(“output.dat”);  // name of file to open

  outStream << “This is a test” << endl;

  outStream.close();   // close the file when done

}



4

Streams (cont)
#include <fstream>

int main()

{

  ofstream outStream;

  outStream.open(“output.dat”);  // name of file to open

  outStream << “This is a test” << endl;

  outStream.close();   // close the file when done

}

This is a test

output.dat

n Notice how we use outStream just
like cout.

n outStream and cout are both
streams, but outStream refers to the
file “output.dat” instead of the
console.

n This program causes the file on the
right to be created.

A brief look ahead…
outStream.open(“output.dat”);  // name of file to open

n Notice the line of code above.

n From experiences with other languages you might have you
can probably guess that :
n “outStream” is being treated as some form of data structure

n “open()” is some sort of member of that data structure

n If you are new to object oriented programming, this may be
confusing.

n Bascially, the “open()” member function is a function call that
pertains to the object named “outStream”.

n We’ll cover more on objects, member functions and classes
next lecture.

Back to Streams…
outStream.close();

n If you explicitly open a file stream, you must remember to
close it.
n How else would you open a stream?

n We’ll cover that later :-)

n We’ve covered how you write to a file, how do you read from
one?

n With a different data type called “ifstream”

Reading from streams
#include <fstream>

int main()

{

  ifstream inStream;

  inStream.open(“input.dat”);  // name of file to open

  inStream >> str;

  cout << “We just read in: “ << str << endl;

  inStream.close();   // close the file when done

}

n Notice the syntax is quite similar to our dealings with
“ofstream”.

n Once the file is opened we can use “inStream” just like we’d
use “cin”--only we’ll be reading from input.dat instead of the
console.

n Let’s check this out…

Demonstration #4

ofstream and ifstream

Being more careful…
n The code we’ve written has one major flaw.

n If the open operation fails, we aren’t handling the condition
properly.

n There are two ways to check that a file was opened.

n Both involve using special member functions:
n The member function is_open()

n The member function fail()

#include <fstream>

int main()

{

  ofstream outStream;

  outStream.open(“output.dat”);  // name of file to open

  if (outStream.is_open())

  {
  // Proceed with file manipulation code here…



5

Being more careful…

n Both ways are valid methods for checking whether or not a
file opened.  The “fail” method is more generic…

#include <fstream>

int main()

{

  ifstream inStream;

  inStream.open(“input.dat”);  // name of file to open

  if (inStream.fail())

  {
  cout << “ERROR… could not open stream” << endl;

     return -1;

  }

  inStream >> str;

  cout << “We just read in: “ << str << endl;

  inStream.close();   // close the file when done

}

Checking for EOF
n When you don’t know how big the file you are reading in from

is,  you’ll need to know how to check for end-of-file.

n There are two ways to do it.
n is_eof() member function

n Boolean “test” on the stream variable

int main()

{

  ifstream inFile(“input.dat”);  // What’s this shortcut?

  long data;

  if (inFile.fail()) return -1;

  while (inFile)               // both lines do the same thing

// while (!inFile.is_eof())    // both lines do the same thing

  {

  inFile >> data;

     cout << “Read in: “ << data << endl;
}

Lecture 3

Final Thoughts…


