
1

Lecture 2

Functions

Functions in C++

long factorial(int n)

n The return type is long. That means the function will
return a long integer to the calling function.

n The name of the function is factorial. When we need
to call this function we will use this name.

n The function takes one parameter which is an integer
variable named n.

Let’s take a look at an example declaration:

The declaration above has the following meaning:

Functions in C++

n Note the use of the post-decrement operator.
n Why do we use postfix here instead of prefix?

n Note the use of return to return the value to the caller.

How might our factorial function be implemented?
long factorial(int n)

{

 long result = 1, k = n;

 while(k > 1)

 {

 result *= k--;
 }

 return result;

}

Functions in C++

#include <iostream>

long factorial(int); // forward declaration

int main()

{
 int x;

 cout << “Please enter a number> “ << endl;

 cin >> x;

 cout << x << “! is “ << factorial(x) << endl;
}

How might we call our function from a main() function?

n Note forward declaration
n Needed only if factorial() appears below main() in the file

n Parameter names do not need to be specified but all types must!

n Function call--an expression which evaluates to its return
value.
n Could also be used in assignment

Demonstration #1

The factorial function

Argument Passing

n There are two ways to pass arguments to functions in C++:
n Pass by VALUE

n Pass by REFERENCE

n Pass by VALUE
n The value of a variable is passed along to the function

n If the function modifies that value, the modifications stay within the
scope of that function.

n Pass by REFERENCE
n A reference to the variable is passed along to the function

n If the function modifies that value, the modifications appear also
within the scope of the calling function.

2

Two Function Declarations

long squareIt(long x) // pass by value

{

 x *= x; // remember, this is like x = x * x;

 return x;

}

n Now here is the same function declared as “pass by reference”

Here is a function declared as “pass by value”

long squareIt(long &x) // pass by reference

{

 x *= x; // remember, this is like x = x * x;

 return x;

}

n What’s the difference?

Calling the Function
#include <iostreams>
void main()

{

 long y;

 cout << “Enter a value to be squared> “;

 cin >> y;

 long result = squareIt(y);

 cout << y << “ squared is “ << result << endl;

}

• Suppose the user enters the number 7 as input
• When squareIt() is declared as pass by value, the output is:

• 7 squared is 49
• When squareIt() is declared as pass by reference, the output is:

• 49 squared is 49
• Let’s see for ourselves...

Demonstration #2

Pass by Value

vs.

Pass by Reference

Why use Pass By Reference?

n Because you really want changes made to a parameter
to persist in the scope of the calling function.
n The function call you are implementing needs to initialize a

given parameter for the calling function.

n You need to return more than one value to the calling function.

n Because you are passing a large structure
n A large structure takes up stack space

n Passing by reference passes merely a reference (pointer) to the
structure, not the structure itself.

n Let’s look at these two reasons individually...

Why use Pass By Reference?

void getTimeAndTemp(string &time, string &temp)

{

 time = queryAtomicClock(); // made up func.

 temp = queryLocalTemperature(); // made up func.

}

n All the caller would need to do now is provide the string variables

Because you want to return two values

void main()

{

 string theTime, theTemp;

 getTimeAndTemp(theTime,theTemp);

 cout << “The time is: “ << theTime << endl;

 cout << “The temperature is: “ << theTemp << endl;

}

Why use Pass By Reference?
Because you are passing a large structure:

n initDataType is an arbitrary function used to initialize a
variable of type BIGDataType.

n Assume BIGDataType is a large class or structure

n With Pass by Reference, only a reference is passed to this
function (instead of throwing the whole chunk on the stack)

void initDataType(BIGDataType &arg1)

{

 arg1.field1 = 0;

 arg1.field2 = 1;

 // etc., etc., assume BIGDataType has

 // lots of fields

}

3

Why use Pass By Reference?

bool isBusy(BIGDataType &arg1)

{

 if (arg1.busyField = 0)

 return true;

 return false;
}

But be careful...

n Recognize the familiar bug?

n What’s worse is that you’ve mangled the data type in the
scope of the calling function as well!

n Can you protect against this?

Why use Pass By Reference?

bool isBusy(const BIGDataType &arg1)

{

 if (arg1.busyField = 0)

 return true;

 return false;
}

You can specify that a parameter cannot be modified:

n By adding the const keyword in front of the argument
declaration, you tell the compiler that this parameter must
not be changed by the function.

n Any attempts to change it will generate a compile time
error.

Demonstration #3

Pass by Reference

(with and without the const
keyword)

Scope

n Scope can be defined as a range of lines in a program in
which any variables that are defined remain valid.

n Scope delimiters are the curly braces { and }
n Scope delimiters are usually encountered:

n At the beginning and end of a function definition

n In switch statements

n In loops and if/else statements

n In class definitions (coming soon!)

n All by themselves in the middle of nowhere

n Wait, what was that last one?????

OK, we’ve used the “s” word a few times already today…
What does it mean?

Scope

void main()

{

 int x = 0,y = 1 , k = 5;

 {

 int x = 1;

 cout << “x is “ << x << “, y is “ << y << endl;

 }

 cout << “x is “ << x << “ and k is “ << k << endl;

}

Scope Delimiters may appear by themselves...

n When you have multiple scopes in the same function you
may access variables in any of the “parent” scopes.

n You may also declare a variable with the same name as
one in a parent scope. The local declaration takes
precedence.

Scope

void main()

{

 int x = 0,y = 1;

 {

 int x = 1, k = 5;

 cout << “x is “ << x << “, y is “ << y << endl;

 }

 cout << “x is “ << x << “ and k is “ << k << endl;

}

n What is wrong here?

n You may only access variables that are declared in the
current scope or “above”.

4

Scope

int globalX = 0;

int main()

{

 int x = 0,y = 1,k = 5;

 {

 int x = 1;

 cout << “x is “ << x << “, y is “ << y << endl;

 globalX = 10;

 }

 cout << “x is “ << x << “ and k is “ << k << endl;

 cout << “globalX is “ << globalX << endl;

}

There is a global scope...

n What happens here?

Demonstration #4

Miscellaneous Scope Issues

Function Declarations vs. Definitions
We’ve been somewhat lax about this...

n Before a function may be called by any other function it
must be either defined or declared.

n When a function is declared separately from its definition,
this is called a forward declaration.

n Forward declarations need only to specify return type and
parameter type. Parameter names are irrelevant.

long squareIt(long); // Declaration (or prototype)
.
.
.

long squareIt(long x) // Definition
{
 return(x * x);
}

Function Declarations and Header Files

n What happens when programs start getting really big?
n We naturally want to separate all the functions we implement into

logical groupings. These groupings are usually stored in their own
files.

n How, then, do we access a function from one file when we are
working in another file?

n We move the function declarations into header files

n Then all we need to do is include the appropriate header
file in whatever source file needs it.

n By convention, the function definitions go into a source file
with a .cpp suffix, whereas function declarations go into a
source file with a .h suffix.

n Consider the following example...

Function Declarations and Header Files

// mymath.h -- header file for math functions

long squareIt(long);

// mymath.cpp -- implementation of math functions

long squareIt(long x)

{

 return x * x;

}

// main.cpp

#include “mymath.h”

void main()

{
 cout >> “5 squared is “ >> squareIt(5) >> endl;
}

Function Declarations and Header Files

MAIN.CPP

#include “MyMath.h”
int main()
{
int x=squareIt(5);
cout << x << endl;
}

MYMATH.CPP

long squareIt(long x)
{
 return x * x;
}

MYMATH.H

long squareIt(long x);

We start out with three files. When
the compiler begins compiling
MAIN.CPP, it will “include” the
MYMATH.H header file…

5

Function Declarations and Header Files

MAIN.CPP

int main()
{
int x=squareIt(5);
cout << x << endl;
}

MYMATH.CPP

long squareIt(long x)
{
 return x * x;
}

MYMATH.H

long squareIt(long x);

When the compiler begins compiling
MAIN.CPP, the contents of
MYMATH.H are actually “drawn
in” to the MAIN.CPP file. The

compiler sees the declaration of squareIt() from MYMATH.H and
so is happy when it comes time to compile the call to squareIt()
In the main() function.

